Abstract:The oil-filled terminal adopts a solid-liquid composite insulation composite structure composed of silicone rubber (SiR) stress cone and silicone oil (SO) inside. Compared to the cable body, when the composite insulation interface is invaded by moisture or contains air gaps or impurities, it can cause electric field distortion. This distortion can trigger creepage and even flashover along the surface of the stress cone, significantly impacting the service life of the oil-filled terminal. Among them, moisture intrusion is recognized as the main factor causing insulation deterioration in cable terminals, and cable termination failure rate caused by it account for about 50%. Therefore, the moisture migration process and equilibrium characteristics between SO and SiR solid-liquid medium in the oil-filling terminal need to be further studied. In this paper, the moisture migration law between SO-SiR composite insulation system in oil-filled terminals is systematically studied, the swelling model and mechanism of SO in the terminals are discussed, and the moisture equilibrium characteristics of SO-SiR composite insulation systems under the effect of temperature and swelling are clarified. Firstly, this study conducted moisture absorption experiments on SO and SiR under various temperature and humidity conditions. The water content of SO and SiR at different temperature and humidity equilibrium states was measured. Using the indirect equilibrium theory, a moisture equilibrium curve for the SO-SiR composite insulation was plotted. The results show that the water content of SO has a linear relationship with the relative humidity at the same temperature, and the saturated water content of SO changes exponentially with temperature. The water content of SiR has a nonlinear relationship with relative humidity, and the saturated water content of SiR does not change with temperature. As the temperature rises, moisture migrates from the SiR to the SO. In addition to the moisture migration between the SO and the SiR duplex medium in the oil-filled terminal, the SO will also diffuse into the SiR. This diffusion destroys the physical and chemical cross-linking results of the SiR, and affects the moisture absorption characteristics of the SiR. Therefore, it is necessary to clarify the physical mechanism underlying the swelling of SiR by SO. The results show that the SO swells into the SiR in the form of free state and bound state according to the Langmuir diffusion process. With increasing time, the swelling rate increases as a logarithmic function. With increasing temperature, the equilibrium swelling mass remained unchanged, but the swelling rate increased. Under the SO (solvent)-SiR (solute) system, the elastic free energy of the system increased due to the swelling of SO, which was offset by the Gibbs free energy. Finally, the total free energy is zero, and the swelling reaches equilibrium. On this basis, the moisture equilibrium curve of SO-SiR composite insulation was further optimized. After the swelling of SO, the free volume of SiR increases, which can dissolve more water. However, SiR with different degrees of swelling still exhibits the same water absorption characteristics as unswollen SiR. Combined with the moisture dissolution characteristics of SO, the moisture equilibrium surface diagram of SO-SiR composite insulation under temperature and swelling was drawn. With increased swelling, water molecules migrate from the SO to the SiR. Through this surface diagram, the water content of SO and SiR under different equilibrium states can be obtained, and the operation and maintenance of oil-filled terminals can be guided.
[1] CIGRE Working Group B1.10. Update of service experience of HV under groundand submarine cable systems[R]. Paris: CIGRE, 2019. [2] 王鹰, 王毅, 王志龙, 等. 110kV户外电缆终端的现状及发展趋势[J]. 电网技术, 2008, 32(增刊2): 291-293. Wang Ying, Wang Yi, Wang Zhilong, et al.The existing circumstances and development trend of the 110 kV cable terminal[J]. Power System Technology, 2008, 32(S2): 291-293. [3] 祝贺, 何峻旭, 郑亚松, 等. 电缆终端应力锥错位缺陷对界面温度及应力分布的影响[J]. 电工技术学报, 2024, 39(1): 65-75. Zhu He, He Junxu, Zheng Yasong, et al.Influence of cable terminal stress cone dislocation defect on interface temperature and stress distribution[J]. Tra-nsactions of China Electrotechnical Society, 2024, 39(1): 65-75. [4] Li Yuan, Yang Senhong, Li Ranran, et al.Migration and bridging characteristics of cellulose impurities in oil-paper insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(2): 801-808. [5] 惠宝军, 傅明利, 刘通, 等. 110 kV及以上电力电缆系统故障统计分析[J]. 南方电网技术, 2017, 11(12): 44-50, 67. Hui Baojun, Fu Mingli, Liu Tong, et al.Statistical analysis on failures of 110 kV and above power cable system[J]. Southern Power System Technology, 2017, 11(12): 44-50, 67. [6] 吴治诚, 周俊杰, 张乔根, 等. 油纸绝缘水分迁移特性研究综述[J]. 高电压技术, 2023, 49(2): 781-792. Wu Zhicheng, Zhou Junjie, Zhang Qiaogen, et al.Review on moisture migration characteristics of oil-paper insulation[J]. High Voltage Engineering, 2023, 49(2): 781-792. [7] CIGRE Working Group A2.35. Experiences in service with new insulating liquids[R]. Paris: CIGRE, 2010. [8] 高岩峰, 王家福, 阎志鹏, 等. 水在高温硫化硅橡胶中的扩散特性研究[J]. 中国电机工程学报, 2015, 35(1): 231-239. Gao Yanfeng, Wang Jiafu, Yan Zhipeng, et al.Investigation on water diffusion property into HTV silicone rubber[J]. Proceedings of the CSEE, 2015, 35(1): 231-239. [9] 左周, 周颖, 梁曦东, 等. 水分侵入高温硫化硅橡胶扩散行为的仿真研究(一):数值建模与计算[J]. 中国电机工程学报, 2024, 44(1): 341-353. Zuo Zhou, Zhou Ying, Liang Xidong, et al.Numerical simulation of diffusion behavior of water ingress into HTV silicone rubber part I: numerical modeling and calculation[J]. Proceedings of the CSEE, 2024, 44(1): 341-353. [10] 周远翔, 张征辉, 张云霄, 等. 热-力联合老化对硅橡胶交联网络及力学和耐电特性的影响[J]. 电工技术学报, 2022, 37(17): 4474-4486. Zhou Yuanxiang, Zhang Zhenghui, Zhang Yunxiao, et al.The effect of combined thermal-mechanical aging on the cross-linking network and mechanical and electrical properties of silicone rubber[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4474-4486. [11] Dai Jianjun, Yao Xuefeng, Yeh H Y, et al.Moisture absorption of filled silicone rubber under electrolyte[J]. Journal of Applied Polymer Science, 2006, 99(5): 2253-2257. [12] Wang Zhong, Jia Zhidong, Fang Maohuan, et al.Absorption and permeation of water and aqueous solutions of high-temperature vulcanized silicone rubber[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3357-3365. [13] 杨超杰, 刘云鹏, 赵涛, 等. 温度对纤维素绝缘中水分吸附和解吸的影响[J]. 电工技术学报, 2025, 40(1): 300-311. Yang Chaojie, Liu Yunpeng, Zhao Tao, et al.Effect of temperature on moisture adsorption and desorption in cellulose insulation[J]. Transactions of China Electro-technical Society, 2025, 40(1): 300-311 [14] 刘云鹏, 杨超杰, 赵涛, 等. 温度对油-纸界面处微水迁移与局部放电的影响[J]. 电工技术学报, 2024, 39(16): 5182-5193. Liu Yunpeng, Yang Chaojie, Zhao Tao, et al.Effect of temperature on moisture migration and partial discharge at the oil-paper interface[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5182-5193. [15] 李原, 杨森鸿, 周浩, 等. 直流电压下油纸绝缘纤维杂质成桥放电特性综述[J]. 高电压技术, 2023, 49(4): 1645-1652. Li Yuan, Yang Senhong, Zhou Hao, et al.Review on bridging and discharging characteristics of cellulose impurities in oil-paper insulation under DC voltage[J]. High Voltage Engineering, 2023, 49(4): 1645-1652. [16] Fabre J, Pichon A.Deteriorating processes and products of paper in oil application to transformers[C] //International Conference on Large High Voltage Electric System (CIGRE), Paris, France, 1960: 137. [17] Oommen T V.Moisture equilibrium in paper-oil insulation systems[C]//1983 EIC 6th Electrical/ Electronical Insulation Conference, Chicago, IL, USA, 1983: 162-166. [18] Ewart D N.Laboratory and factory measurements of moisture equilibrium in power transformer insulation [R]. Boston: General Electric Company, 1960. [19] Norris E T.High-voltage power-transformer insulation[J]. Proceedings of the Institution of Electrical Engineers, 1963, 110(2): 428. [20] Yuan Hao, Li Yuan, Zhou Kai, et al.Moisture transfer characteristics in silicone oil-silicone rubber insulation system considering swelling effect[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(5): 2025-2032. [21] 赵莉华, 邱九皓, 李彦姝, 等. 多因素下硅橡胶吸收硅脂/硅油特性及其对力学性能的影响[J]. 高电压技术, 2020, 46(12): 4203-4210. Zhao Lihua, Qiu Jiuhao, Li Yanshu, et al.Silicone grease/silicone oil absorption characteristics of silicone rubber under various factors and its influences on mechanical properties of silicone rubber[J]. High Voltage Engineering, 2020, 46(12): 4203-4210. [22] 魏亚军, 张雨利, 邱雨, 等. 充油电缆终端用PIB与SR/EP的相容性研究[J]. 高压电器, 2024, 60(5): 164-170. Wei Yajun, Zhang Yuli, Qiu Yu, et al.Research on compatibility between PIB and SR/EP for oil-filled cable terminals[J]. High Voltage Apparatus, 2024, 60(5): 164-170. [23] International Electrotechnical Commission.Specifications for unused silicone insulating liquids for electro technical purposes: IEC 60836—2015[S]. Geneva: IEC, 2015. [24] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电力防护用橡胶材料第2部分: 电缆附件用橡胶材料: GB/T 20779.2—2007[S]. 北京: 中国标准出版社, 2008. [25] International Organization for Standardization. Rubber, raw — determination of water content by Karl Fischer method: ISO 12492—2012[S]. Geneva: ISO, 2012. [26] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 运行中变压器油和汽轮机油水分含量测定法(库仑法): GB/T 7600—2014[S]. 北京: 中国标准出版社, 2015. [27] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纸、纸板和纸浆分析试样水分的测定: GB/T 462—2008[S]. 北京: 中国标准出版社, 2008. [28] 赵曼卿, 张博, 李健飞, 等. 基于分子动力学仿真的混合油中水分子扩散行为及其介电常数研究[J]. 电工技术学报, 2024, 39(3): 798-809, 900. Zhao Manqing, Zhang Bo, Li Jianfei, et al.Influence of natural ester and mineral oil blending on the diffusion behavior of water molecules and the dielectric properties[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 798-809, 900. [29] 朱孟兆. 油浸绝缘纸热老化机理的分子动力学研究[D]. 重庆: 重庆大学, 2011. Zhu Mengzhao.Molecular dynamics study of thermal aging of oil-impregnated insulation paper[D]. Chongqing: Chongqing University, 2011. [30] Qiu Qinpan, Zhang Jingwen, Yang Lu, et al.Differences analysis of water molecular diffusion behaviors in vegetable oil and mineral oil under temperature field[J]. Journal of Molecular Liquids, 2021, 323: 115030. [31] 严智民, 杨凯, 王诗航, 等. 硅脂对硅橡胶电树枝劣化特性的影响机制研究[J]. 中国电机工程学报, 2019, 39(2): 604-611, 657. Yan Zhimin, Yang Kai, Wang Shihang, et al.Study on the mechanism of silicone grease on electrical tree degradation of silicone rubber[J]. Proceedings of the CSEE, 2019, 39(2): 604-611, 657. [32] 王康, 王建国, 郑峰, 等. 白炭黑含量对硅橡胶结构和憎水恢复性影响[J]. 电工技术学报, 2016, 31(12): 31-39. Wang Kang, Wang Jianguo, Zheng Feng, et al.Effect of fumed silica content on the microstructure and hydrophobicity recovery of silicon rubber[J]. Tran-sactions of China Electrotechnical Society, 2016, 31(12): 31-39. [33] 申瑞. 水分侵入复合绝缘子影响因素研究[D]. 北京: 华北电力大学, 2017. Shen Rui.Study on the effect factors of moisture invading into composite insulator[D]. Beijing: North China Electric Power University, 2017. [34] 梁英, 高婷, 王祥念, 等. 电场和温度协同作用下复合绝缘子用硅橡胶微观结构演化[J]. 电工技术学报, 2020, 35(7): 1575-1583. Liang Ying, Gao Ting, Wang Xiangnian, et al.Microstructure evolution of silicone rubber used for composite insulators under the effects of electric field and temperature[J]. Transactions of China Electro-technical Society, 2020, 35(7): 1575-1583. [35] Popineau S, Rondeau-Mouro C, Sulpice-Gaillet C, et al.Free/bound water absorption in an epoxy adhesive[J]. Polymer, 2005, 46(24): 10733-10740. [36] Wang Zhong, Qiu Jiuhao, Li Yanshu, et al.Property failure of silicone rubber caused by silicone grease absorption[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1): 326-332. [37] 潘金生, 仝健民, 田民波. 材料科学基础[M]. 北京: 清华大学出版社, 1998. [38] Rubinstein M, Colby R H.Polymer Physics[M]. Oxford: Oxford University Press, 2003. [39] Louf J F, Lu N B, O’Connell M G, et al. Under pressure: Hydrogel swelling in a granular medium[J]. Science Advances, 2021, 7(7): eabd2711. [40] Thakur S, Shaw A, Andritsch T, et al.A review on the relevance of standards for silicone insulating liquids used in cable sealing ends[J]. IEEE Electrical Insulation Magazine, 2021, 37(6): 33-40. [41] Wang Cheng, Tu Youping, Yuan Zhikang, et al.Study on breakdown of HTV silicone rubber after water invasion[C]//2018 IEEE Electrical Insulation Conference (EIC), San Antonio, TX, USA: 2018: 508-511.