Influence of Water Band on AC Flashover Characteristics and Electric Field Distribution of Hydrophobic Surface
Liu Shili1, Li Weidong1, Li Zhenxin2, Pan Luyao1
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. Jilin Power Supply Company State Grid Jilinsheng Electric power Supply Company Jilin 132012 China
Abstract:When the hydrophobicity of the composite insulator is weakened, the surface of the composite insulator is easy to gather water droplets to form a water band in the wet environment, which affects the surface electric field distribution and surface flashover characteristics of the insulator. In this paper, a PTFE board is used to simulate the formation environment of the water band, and the influence of the shape of the linear and broken water band on the flashover process of the hydrophobic surface is experimentally studied. Based on the finite element numerical calculation, the electric field distribution of the water band and its surroundings is analyzed, and combined with the test results, the mechanism of influence of the water band on the arc development path is discussed. The results show that the smaller the opening angle θ of the water band is, the smaller the water band electric field becomes, and the larger the dry band electric field between the water bands will be. At the same time, the smaller the water band spacing d is, the larger the dry band electric field will be. When there is a broken-line water band on the water surface, the arc shows three different development paths according to the difference of θ and d.
刘士利, 李卫东, 李振新, 潘璐瑶. 水带对憎水性表面交流闪络特性与电场分布的影响[J]. 电工技术学报, 2022, 37(21): 5570-5577.
Liu Shili, Li Weidong, Li Zhenxin, Pan Luyao. Influence of Water Band on AC Flashover Characteristics and Electric Field Distribution of Hydrophobic Surface. Transactions of China Electrotechnical Society, 2022, 37(21): 5570-5577.
[1] 梁曦东, 高岩峰, 王家福, 等. 中国硅橡胶复合绝缘子快速发展历程[J]. 高电压技术, 2016, 42(9): 2888-2896. Liang Xidong, Gao Yanfeng, Wang Jiafu, et al.Rapid development of silicone rubber composite insulator in China[J]. High Voltage Engineering, 2016, 42(9): 2888-2896. [2] 宿志一, 范建斌. 复合绝缘子用于高压及特高压直流输电线路的可靠性研究[J]. 电网技术, 2006, 30(12): 16-23. Su Zhiyi, Fan Jianbin.Research on reliability of composite insulators used in EHV and UHV DC transmission lines[J]. Power System Technology, 2006, 30(12): 16-23. [3] 巢亚锋, 王成, 黄福勇, 等. 中国输电线路复合绝缘子运行状况分析[J]. 高压电器, 2015, 51(8): 119-124. Chao Yafeng, Wang Cheng, Huang Fuyong, et al.Assessment on operation state of composite insulators used on Chinese transmission lines[J]. High Voltage Apparatus, 2015, 51(8): 119-124. [4] 孙文健, 李亚伟, 刘轩东, 等. 高海拔地区紫外线辐射对复合绝缘子表面憎水性的影响机制[J]. 电网技术, 2018, 42(3): 996-1000. Sun Wenjian, Li Yawei, Liu Xuandong, et al.Influence mechanism of UV on surface hydrophobicity of composite insulators in high altitude areas[J]. Power System Technology, 2018, 42(3): 996-1000. [5] 戴罕奇, 孙月, 王黎明. 基于特征参量Kh10的复合绝缘子污闪试验[J]. 电工技术学报, 2020, 35(24): 5207-5217. Dai Hanqi, Sun Yue, Wang Liming.Pollution flashover for composite insulators based on characteristic parameter Kh10[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5207-5217. [6] Rowland S M, Xiong Y, Robertson J, et al.Aging of silicone rubber composite insulators on 400kV transmission lines[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(1): 130-136. [7] 吕玉坤, 宋庆壮, 王召鹏, 等. 低风速环境下XSP-160型瓷三伞绝缘子积污特性数值模拟[J]. 电工技术学报, 2020, 35(10): 2257-2265. Lü Yukun, Song Qingzhuang, Wang Zhaopeng, et al.Simulation of fouling characteristics of XSP-160 porcelain three umbrella insulators under low wind speed[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2257-2265. [8] 张崇兴, 任明, 周洁睿, 等. 振荡操作冲击电压下绝缘子气隙缺陷局部放电特性研究[J]. 电工技术学报, 2019, 34(14): 3074-3083. Zhang Chongxing, Ren Ming, Zhou Jierui, et al.Analysis for partial discharges behavior in SF6 gas filled void in gas insulated switchgear under oscillating switching impulses[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3074-3083. [9] 韩兴波, 蒋兴良, 黄亚飞, 等. 复合绝缘子直流电场下的水滴运动及覆冰特性[J]. 电工技术学报, 2020, 35(9): 2042-2050. Han Xingbo, Jiang Xingliang, Huang Yafei, et al.Icing properties of composite insulator and droplet movement under DC electric field[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2042-2050. [10] 李剑, 王湘雯, 黄正勇, 等. 超疏水绝缘涂层制备与防冰、防污研究现状[J]. 电工技术学报, 2017, 32(16): 61-75. Li Jian, Wang Xiangwen, Huang Zhengyong, et al.Research of preparation, anti-icing and anti-pollution of super hydrophobic insulation coatings[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 61-75. [11] 吕玉坤, 王佳文, 宋庆壮, 等. 水珠对复合绝缘子表面电场畸变特性的影响[J]. 电网技术, 2021, 45(3): 1201-1207. Lü Yukun, Wang Jiawen, Song Qingzhuang, et al.Effect of water drop on electric field distortion of composite insulator[J]. Power System Technology, 2021, 45(3): 1201-1207. [12] 曹保江, 罗蜀彩, 杨坤松, 等. 分离水珠对车顶绝缘子沿面电场影响及相应优化改进措施[J]. 高电压技术, 2015, 41(5): 1651-1658. Cao Baojiang, Luo Shucai, Yang Kunsong, et al.Influence of separated droplets on roof insulator surface electric field distribution and improving measures[J]. High Voltage Engineering, 2015, 41(5): 1651-1658. [13] 徐志钮, 律方成, 李和明. 分离水珠对支柱绝缘子电场分布的影响[J]. 高电压技术, 2010, 36(9): 2278-2284. Xu Zhiniu, Lü Fangcheng, Li Heming.Influence of separated globules on post insulator electric field distribution[J]. High Voltage Engineering, 2010, 36(9): 2278-2284. [14] 姚刚, 文习山, 蓝磊. 湿润污秽绝缘表面电场及针板电极下的沿面放电[J]. 高电压技术, 2010, 36(6): 1407-1414. Yao Gang, Wen Xishan, Lan Lei.Electric field of wet contamination on dielectric surface and creeping discharge in needle-board electrodes[J]. High Voltage Engineering, 2010, 36(6): 1407-1414. [15] 吴广宁, 邵梦春, 彭松, 等. 车顶绝缘子表面水珠及降落水滴电场分布及其对闪络特性的影响[J]. 高电压技术, 2017, 43(2): 557-566. Wu Guangning, Shao Mengchun, Peng Song, et al.Distribution of surface electric field of water and water droplets landing and its influence on the insulator flashover characteristics[J]. High Voltage Engineering, 2017, 43(2): 557-566. [16] 曹雯, 栾明杰, 申巍, 等. 交流复合绝缘子表面水珠动态行为及对闪络的影响[J]. 电机与控制学报, 2020, 24(2): 151-158. Cao Wen, Luan Mingjie, Shen Wei, et al.Dynamic behavior of water droplets on AC composite insulator surface and its influence on flashover[J]. Electric Machines and Control, 2020, 24(2): 151-158. [17] Li Yufeng, Jin Haiyun, Nie Shichao, et al. Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface[J]. Applied Physics Letters, 2017, 110(20): 201602(1-4). [18] Nazemi M H, Hinrichsen V.Experimental investigations on water droplet oscillation and partial discharge inception voltage on polymeric insulating surfaces under the influence of AC electric field stress[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(2): 443-453. [19] 司马文霞, 刘贞瑶, 蒋兴良, 等. 硅橡胶表面分离水珠的局部放电对表面特性的影响[J]. 中国电机工程学报, 2005, 25(6): 113-118. Sima Wenxia, Liu Zhenyao, Jiang Xingliang, et al.Effects on surface performance of partial discharges due to discrete water droplets on the silicone rubber[J]. Proceedings of the CSEE, 2005, 25(6): 113-118. [20] 赵林杰. 硅橡胶复合绝缘子憎水性与污闪特性研究[D]. 北京: 华北电力大学(北京), 2008. [21] 吴浩哲, 高克利, 周军, 等. 复合绝缘子污层弱憎水性条件下的表面水滴形态[J]. 高电压技术, 2019, 45(2): 478-483. Wu Haozhe, Gao Keli, Zhou Jun, et al.Water droplet shape on surfaces of composite insulators with contamination under unobvious hydrophobic state[J]. High Voltage Engineering, 2019, 45(2): 478-483. [22] 戴罕奇, 梅红伟, 王黎明, 等. 复合绝缘子弱憎水性状态描述方法Ⅰ: 静态接触角法的适用性[J]. 电工技术学报, 2013, 28(8): 34-47. Dai Hanqi, Mei Hongwei, Wang Liming, et al.Description method Ⅰ for unobvious hydrophobic state of composite insulators—usability of contact angle method[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 34-47. [23] 戴罕奇, 梅红伟, 王黎明, 等. 复合绝缘子弱憎水性状态描述方法Ⅱ: 喷水分级法的不确定性[J]. 电工技术学报, 2015, 30(3): 240-249. Dai Hanqi, Mei Hongwei, Wang Liming, et al.Description method Ⅱ for unobvious hydrophobic state of composite insulators—uncertainty of hydrophobic degree by spray grading method[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 240-249.