Research on Transient Characteristic Analysis and Transient Stability Mechanism of Distributed Condenser
Wang Tong1, Wang Xiaotong1, Han Zichang1, Wang Zengping1, Zhao Wei2
1. State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. North China Branch of State Grid Corporation of China Beijing 100053 China
Abstract:Currently, the installed capacity and power generation of renewable energy source is climbing rapidly, but the transient overvoltage problem after renewable energy source access to the power system has become a serious challenge. Distributed condenser can effectively inhibit the transient overvoltage of renewable energy and enhance the renewable energy sending capacity. However, due to proximity to renewable energy sources, the distributed condenser also exists transient instability risk during fault, which restricts the consumption of renewable energy. Existing studies have mostly used node elimination or circuit equivalent change for network simplification, failing to consider the dynamic characteristics of point of common coupling (PCC), and there are few reports on the interaction between grid point voltage and transient stability of distributed condenser. Aiming at transient characteristic analysis and transient stability mechanism of distributed condenser, firstly, the transient analysis model of distributed condenser with retaining the characteristics of the voltage of PCC in power angle time-scale is established. Based on the phase relationship of electrical quantities, the power-angle characteristics curve is obtained. The interaction between the power angle of the distributed condenser and the PCC voltage after fault is analyzed. Based on the derivation and analysis of the mathematical model, the expression and changing characteristics of the PCC voltage is obtained, which explains the mechanism of continuous low voltage at PCC. As a result, renewable energy source continuously under low voltage ride-through (LVRT) control. The applicability of the proposed method is further confirmed in three-machine system. Secondly, the process and reason of phase quadratic jumping of renewable energy PCC voltage during fault transient and steady state is analyzed. The mechanism of phase jumping, transition resistance and renewable energy LVRT control strategy on the power angle swing direction of distributed condenser is revealed. For the first phase jumping, when the transition impedance is inductive, the phase of PCC voltage jumps forward, and when the transition impedance is resistive, the phase of PCC voltage jumps backward. For the second phase jumping, The injected power of distributed condenser is calculated based on the superposition theorem, which is effected by the LVRT control strategy of renewable energy. Finally, the influence of renewable energy output power, capacity of distributed condenser and delivery distance on the transient stability of distributed condenser is analyzed based on the transient energy function. The phase trajectory diagram is used to analyze the above influencing factors. The correctness of the proposed mechanism is verified in the improved IEEE39 node system, including continuous low voltage at PCC, phase quadratic jumping, swing direction of distributed condenser, and transient stability influencing factors. The following conclusions can be drawn from the analysis. Before the fault, the renewable energy power injection causes the power angle characteristic curve shift downward, which increases the risk of destabilization of distributed condenser. During the fault, the renewable energy control strategy and transition impedance cause the phase quadratic jumping of PCC voltage, which has a direct impact on the power angle swing direction of distributed condenser. After the fault, due to the power angle of distributed condenser swing away, the renewable energy remains in LVRT state, which is conducive to transient stability of distributed condenser. In addition, the output power of renewable energy, delivery distance, and the capacity of distributed condenser all affect the transient stabilization margin of the distributed condenser. Upgrading the capacity of distributed condenser can effectively reduce the risk of the transient instability, and improve the delivery capability of renewable energy.
王彤, 王潇桐, 韩梓畅, 王增平, 赵伟. 分布式调相机暂态特性分析与暂态功角稳定性机理研究[J]. 电工技术学报, 2025, 40(1): 36-51.
Wang Tong, Wang Xiaotong, Han Zichang, Wang Zengping, Zhao Wei. Research on Transient Characteristic Analysis and Transient Stability Mechanism of Distributed Condenser. Transactions of China Electrotechnical Society, 2025, 40(1): 36-51.
[1] 国家能源局. 国家能源局发布2022年全国电力工业统计数据[EB/OL].[2023-01-18]. https://www. nea.gov.cn/2023-01/18/c_1310691509.htm. [2] 刘飞, 陶昕, 张祥成, 等. 基于电网消纳能力的新能源发展策略研究[J]. 电气技术, 2019, 20(6): 50-55. Liu Fei, Tao Xin, Zhang Xiangcheng, et al.Research on optimal matching scheme of renewable energy based on renewable energy consumption ability[J]. Electrical Engineering, 2019, 20(6): 50-55. [3] 刘华志, 李永刚, 王优胤, 等. 无功电压优化对新能源消纳的影响[J]. 电工技术学报, 2019, 34(增刊2): 646-653. Liu Huazhi, Li Yonggang, Wang Youyin, et al.Influence about reactive power voltage optimization on the dissipation of new energy[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 646-653. [4] 国家能源局. 2024年全国能源工作会议在京召开[EB/OL]. [2023-12-21]. http://www.nea.gov.cn/2023-12/21/c_1310756596.htm. [5] 文云峰, 杨游航, 邢鹏翔, 等. 多维因素制约下新能源消纳能力评估方法研究综述[J]. 中国电机工程学报, 2024, 44(1): 127-147. Wen Yunfeng, Yang Youhang, Xing Pengxiang, et al.Review on the new energy accommodation capability evaluation methods considering multi-dimensional factors[J]. Proceedings of the CSEE, 2024, 44(1): 127-147. [6] Wang Tong, Pei Lin, Wang Jiaming, et al.Overvoltage suppression under commutation failure based on improved voltage-dependent current order limiter control strategy[J]. IEEE Transactions on Industry Applications, 2022, 58(4): 4914-4922. [7] 郭强, 李志强. 同步调相机发展综述[J]. 中国电机工程学报, 2023, 43(15): 6050-6064. Guo Qiang, Li Zhiqiang.Summarization of synchronous condenser development[J]. Proceedings of the CSEE, 2023, 43(15): 6050-6064. [8] 周莹坤, 孙华东, 徐式蕴, 等. 提升电网电压支撑强度的调相机优化配置方法[J]. 电网技术, 2022, 46(10): 3848-3856. Zhou Yingkun, Sun Huadong, Xu Shiyun, et al.Synchronous condenser optimized configuration scheme for power grid voltage strength improvement[J]. Power System Technology, 2022, 46(10): 3848-3856. [9] Nguyen H T, Yang Guangya, Nielsen A H, et al.Combination of synchronous condenser and synthetic inertia for frequency stability enhancement in low-inertia systems[J]. IEEE Transactions on Sustainable Energy, 2019, 10(3): 997-1005. [10] 李辉, 王震, 周挺, 等. 含同步调相机的直流受端换流站全工况下多模式协调控制策略[J]. 电工技术学报, 2020, 35(17): 3678-3690. Li Hui, Wang Zhen, Zhou Ting, et al.Multi-mode coordinated control strategy for DC receiving converter station with synchronous condenser under full operating conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3678-3690. [11] Hadavi S, Saunderson J, Mehrizi-Sani A, et al.A planning method for synchronous condensers in weak grids using semi-definite optimization[J]. IEEE Transactions on Power Systems, 2023, 38(2): 1632-1641. [12] 国家能源局. 世界最大规模新能源分布式调相机群在青海投运[EB/OL].[2022-1-28]. https://www.nea. gov.cn/2022-01/28/c_1310445374.htm. [13] 林旻威, 温步瀛. 大规模风电接入对电力系统暂态稳定性影响研究综述[J]. 电气技术, 2017(4): 1-8, 38. Lin Minwei, Wen Buying.The overview of influence of large scale wind generation on transient stability of power system[J]. Electrical Engineering, 2017(4): 1-8, 38. [14] 杨松浩, 李秉芳, 赵天骐, 等. 新能源场站分布式同步调相机暂态功角失稳形态及机理[J]. 电力系统自动化, 2023, 47(3): 12-18. Yang Songhao, Li Bingfang, Zhao Tianqi, et al.Transient angle instability mode and mechanism of distributed synchronous condensers in renewable energy station[J]. Automation of Electric Power Systems, 2023, 47(3): 12-18. [15] 沈广进, 辛焕海, 刘昕宇, 等. 大型新能源基地中调相机同步失稳机理与影响因素分析[J]. 电力系统自动化, 2022, 46(20): 100-108. Shen Guangjin, Xin Huanhai, Liu Xinyu, et al.Analysis on synchronization instability mechanism and influence factors for condenser in large-scale renewable energy base[J]. Automation of Electric Power Systems, 2022, 46(20): 100-108. [16] 袁彬, 李辉, 向学位, 等. 考虑调相机饱和参数的分阶段励磁控制优化策略[J]. 电力系统保护与控制, 2023, 51(15): 42-54. Yuan Bin, Li Hui, Xiang Xuewei, et al.Optimization strategy of phased excitation control considering phase modulator saturation parameters[J]. Power System Protection and Control, 2023, 51(15): 42-54. [17] Hadavi S, Rathnayake D B, Jayasinghe G, et al.A robust exciter controller design for synchronous condensers in weak grids[J]. IEEE Transactions on Power Systems, 2022, 37(3): 1857-1867. [18] 王蒙, 张文朝, 汪莹, 等. 高比例光伏接入的电力系统暂态过电压控制策略[J]. 太阳能学报, 2023, 44(10): 148-155. Wang Meng, Zhang Wenchao, Wang Ying, et al.Transient overvoltage control strategy of power system considering high proportion photovoltaic access[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 148-155. [19] 杨浩, 刘虎, 丁肇豪, 等. 计及短路比提升与暂态过电压抑制的含高比例风电送端电网两阶段式调相机优化配置[J]. 电网技术, 2024, 48(2): 540-552. Yang Hao, Liu Hu, Ding Zhaohao, et al.Two-stage optimal configuration of condenser for high-proportion wind power sending-end power grid considering short circuit ratio increase and transient overvoltage suppression[J]. Power System Technology, 2024, 48(2): 540-552. [20] 索之闻, 刘建琴, 蒋维勇, 等. 大规模新能源直流外送系统调相机配置研究[J]. 电力自动化设备, 2019, 39(9): 124-129. Suo Zhiwen, Liu Jianqin, Jiang Weiyong, et al.Research on synchronous condenser configuration of large-scale renewable energy DC transmission system[J]. Electric Power Automation Equipment, 2019, 39(9): 124-129. [21] 张建坡, 孟凡, 吴林林, 等.基于电气参数加权占比的新能源场站分布式调相机容量配置[J/OL]. 电网技术, 2023: 1-11[2023-10-18]. https://doi.org/10. 13335/j.1000-3673.pst.2023.1063. Zhang Jianpo, Meng Fan, Wu Linlin, et al.Research on distributed condenser capacity configuration of new energy field station based on the weighted proportion of electrical parameters index[J/OL]. Power System Technology 2023: 1-11[2023-10-18]. https://doi.org/10.13335/j.1000-3673.pst.2023.1063. [22] 沈广进. 新能源电力系统中调相机大扰动同步失稳机理和优化选址研究[D]. 杭州: 浙江大学,2023. Shen Guangjin.Analysis of large disturbance synchronization instability and placing of synchronous condensers for renewable-integrated power systems[D]. Hangzhou: Zhejiang University, 2023. [23] 刘铖, 胥冬洋, 武诚, 等. 考虑频率稳定约束的分布式调相机选址定容策略[J]. 电力建设, 2023, 44(12): 106-114. Liu Cheng, Xu Dongyang, Wu Cheng, et al.Location and sizing strategy of distributed condensers considering frequency stability constraints[J]. Electric Power Construction, 2023, 44(12): 106-114. [24] Wang Kang, Liu Chenxi, Li Li, et al.The impact of synchronous condensers on small signal stability of a multi-infeed power electronic system based on power grid strength[C]//2021 IEEE 1st International Power Electronics and Application Symposium (PEAS), Shanghai, China, 2021: 1-6. [25] 王康, 李子恒, 杨超然, 等. 面向大型新能源基地小干扰稳定性提升的调相机选址方法[J]. 电力系统自动化, 2022, 46(4): 66-74. Wang Kang, Li Ziheng, Yang Chaoran, et al.Siting method of synchronous condenser for small-signal stability improvement of large-scale renewable energy base[J]. Automation of Electric Power Systems, 2022, 46(4): 66-74. [26] Ding Lizhi, Lu Xiaonan, Tan Jin.Small-signal stability analysis of low-inertia power grids with inverter-based resources and synchronous condensers[C]// 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), New Orleans, LA, USA, 2022: 1-5. [27] Liu Xinyu, Xin Huanhai, Zheng Di, et al.Transient stability of synchronous condenser co-located with renewable power plants[J]. IEEE Transactions on Power Systems, 2024, 39(1): 2030-2041. [28] 赵天骐, 李秉芳, 杨松浩, 等. 新能源场站分布式同步调相机暂态功角稳定性影响因素分析[J]. 电力系统自动化, 2023, 47(16): 114-122. Zhao Tianqi, Li Bingfang, Yang Songhao, et al.Analysis of influence factors for transient rotor-angle stability of distributed synchronous condensers in renewable energy stations[J]. Automation of Electric Power Systems, 2023, 47(16): 114-122. [29] 杨金洲, 李业成, 熊鸿韬, 等. 基于阻抗的新能源接入的受端电网暂态电压失稳高风险故障快速筛选方法[J].电工技术学报, 2024, 39(21): 6746-6758. Yang Jinzhou, Li Yecheng, Xiong Hongtao, et al.A fast screening method for the high-risk faults with transient voltage instability in receiving-end power grids interconnected with new energy based on impedance[J]. Transactions of China Electro-technical Society, 2024, 39(21): 6746-6758. [30] 潘学萍, 王卫康, 陈海东, 等. 计及低电压穿越影响的感应电动机动态分群[J]. 电工技术学报, 2024, 39(7): 2001-2016. Pan Xueping, Wang Weikang, Chen Haidong, et al.Study of dynamic clustering method for induction motors in renewable energy power systems considering LVRT effects[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2001-2016. [31] 王潇桐, 王彤, 邓俊, 等. 光伏逆变器机电暂态模型的控制模式及参数一体化辨识策略[J]. 电网技术, 2023, 47(9): 3547-3558. Wang Xiaotong, Wang Tong, Deng Jun, et al.Control mode and parameter integration identification of photovoltaic inverter electromechanical transient model[J]. Power System Technology, 2023, 47(9): 3547-3558. [32] Kundur P, Balu N J, Lauby M G.Power System Stability and Control[M]. New York: McGraw-Hill, 1994. [33] Pai M A.Energy Function Analysis for Power System Stability[M]. Boston: Springer US, 1989. [34] 杨浩, 伍柏臻, 刘铖, 等. 基于暂态关键特征逻辑推理的复杂电网响应驱动暂态稳定性判别[J].电工技术学报, 2024, 39(13): 3943-3955. Yang Hao, Wu Baizhen, Liu Cheng, et al.Response-driven transient stability assessment for complex power grids based on logical reasoning with transient key feature[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 3943-3955.