Simulation of the Influence of Permanent Magnets of the Same Polarity on the Magneto-Acoustic Concentration Tomography of Magnetic Nanoparticles with Magnetic Induction Process
Yan Xiaoheng, Li Zhengxing, Pan Ye, Chen Weihua
Faculty of Electrical and Control Engineering Liaoning Technology University Huludao 125000 China
Magneto-acoustic concentration tomography of magnetic nanoparticles (MNPs) with magnetic induction (MACT-MI) is a new method for concentration imaging of MNPs based on the magneto-acoustic coupling effect. To reduce the excitation source amplitude and increase the signal-to-noise ratio of the magneto-acoustic signal, a new idea was proposed in this paper: the same polarity as the permanent magnet was added in the MACT-MI. According to the Langevin paramagnetic theory, the electromagnetic and acoustic characteristics of MAT-MI after adding permanent magnets with the same polarity were studied, the magnet system was designed, and the concentration gradient model was established. By multi-physics simulation software COMSOL, the 2D distribution of magnetic flux density, magnetic force and sound pressure and the corresponding 1D curve were obtained, which clearly show the physical process of MAT-MI. This conclusion indicates that adding permanent magnets of the same polarity, MNPs receive stronger magnetic force and can obtain magneto-acoustic signals with a larger signal-to-noise ratio, which is conducive to the acquisition of acoustic signals. At the excitation of the magnet system, the sound pressure generated by MNPs is symmetrically distributed up and down and in opposite directions. At the uniform concentration model, the sound pressure peak appears at the concentration boundary, and the peak of the sound pressure of the concentration gradient model appears at the center of the gradient. The results can provide a research foundation for the design of imaging equipment, follow-up experiments and clinical applications of MACT-MI.
闫孝姮, 李政兴, 潘也, 陈伟华. 相同极性永磁体对感应式磁声磁粒子浓度成像过程影响的仿真[J]. 电工技术学报, 2022, 37(8): 1926-1937.
Yan Xiaoheng, Li Zhengxing, Pan Ye, Chen Weihua. Simulation of the Influence of Permanent Magnets of the Same Polarity on the Magneto-Acoustic Concentration Tomography of Magnetic Nanoparticles with Magnetic Induction Process. Transactions of China Electrotechnical Society, 2022, 37(8): 1926-1937.
[1] Moffat B.A novel polyacrylamide magnetic nano- particle contrast agent for molecular imaging using MRI[J]. Molecular Imaging, 2003, 2(4): 324-332.
[2] Nitin N, Laconte L, Zurkiya O, et al.Fun- ctionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent[J]. JBIC Journal of Biological Inorganic Chemistry, 2004, 9(6): 706-712.
[3] Lewin M, Carlesso N, Tung C H, et al.Tat peptide- derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells[J]. Nature Biotechnology: The Science and Business of Bio- technology, 2000, 18(4): 410-414.
[4] Mccloskey K E, Chalmers J J, Zborowski M.Magnetic cell separation: characterization of mag- netophoretic mobility[J]. Analytical Chemistry, 2003, 75(24): 6868-6874.
[5] Arruebo M, Fernández-Pacheco R, Ibarra M R, et al.Magnetic nanoparticles for drug delivery[J]. Drug Development Research, 2010, 67(3): 55-60.
[6] Sun C, Lee J, Zhang Miqin.Magnetic nanoparticles in MR imaging and drug delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(11): 1252-1265.
[7] Ito A, Shinkai M, Honda H, et al.Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor- targeted therapy[J]. Cancer Gene Therapy, 2001, 8(9): 649-654.
[8] Shi Xiaoyu, Liu Guoqing, Yan Xiaoheng, et al.Simulation research on magneto-acoustic con- centration tomography of magnetic nanoparticles with magnetic induction[J]. Computers in Biology and Medicine, 2020, 119(10): 1-7.
[9] Oh J, Feldman M, Kim J, et al.Detection of magnetic nanoparticles in tissue using magneto-motive ultra- sound[J]. Nanotechnology, 2006, 17(16): 4183-4190.
[10] Mehrmohammadi M, Oh J, Aglyamov S, et al.Pulsed magneto-acoustic imaging[J]. IEEE Engineering in Medicine and Biology Society, 2009, 20(9): 4771-4774.
[11] Hu Gang, He Bin.Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimu- lation[J]. Applied physics letters, 2012, 100(1): 3741-3743.
[12] Podaru G, Chikan V, Prakash P.Magnetic field induced ultrasound from colloidal superparamagnetic nanoparticles[J]. Journal of Physical Chemistry C, 2016, 120(4): 2386-2391.
[13] Yan Xiaoheng, Zhang Ying, Liu Guoqiang.Simula- tion research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction[J]. Chinese Physics B, 2018, 27(10): 382-389.
[14] 张帅, 李子秀, 张雪莹, 等. 基于时间反演的磁动力超声成像仿真与实验[J]. 电工技术学报, 2019, 34(16): 3303-3310.
Zhang Shuai, Li Zixiu, Zhang Xueying, et al.The simulation and experiment of magneto-motive ultrasound imaging based on time reversal method[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3303-3310.
[15] Fink M, Lyer S, Alexiou C, et al.Quantitative imaging of the iron-oxide nanoparticle- concentration for magnetic drug targeting employing inverse magnetomotive ultrasound[J]. Current Directions in Biomedical Engineering, 2019, 5(1): 417-419.
[16] Yan Xiaoheng, Xu Zhengyang, Chen Weihua, et al.Implementation method for magneto-acoustic con- centration tomography with magnetic induction (MACT-MI) based on the method of moments[J]. Computers in Biology and Medicine, 2021, 128(10): 1-11.
[17] 周德全, 石天明. 基于ANSYS的电阻层析成像传感器敏感场三维分析[J]. 电气技术, 2008, 9(3): 30-33.
Zhou Dequan, Shi Tianming.Three-dimensional analysis of electrical resistance tomography sensor fields based on ANSYS[J]. Electrical Engineering, 2008, 9(3): 30-33.
[18] 张帅, 侯琬姣, 张雪莹, 等. 基于真实乳腺模型的感应式磁声成像正问题[J]. 电工技术学报, 2016, 31(24): 126-133, 149.
Zhang Shuai, Hou Wanjiao, Zhang Xueying, et al.Forward problem in magnetoacoustic tomography with magnetic induction based on real model of breast[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 126-133, 149.
[19] 李星, 杨帆, 余晓, 等. 基于内源式电阻抗成像的接地网缺陷诊断逆问题研究[J]. 电工技术学报, 2019, 34(5): 902-909.
Li Xing, Yang Fan, Yu Xiao, et al.Research on the inverse problem of grounding grid fault diagnosis based on inner-source EIT[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 902-909.
[20] 刘亮, 苏盛, 曹一家, 等. 基于Kalman滤波的持续卫星时间同步攻击防护方法[J]. 电力系统自动化, 2020, 44(10): 119-126.
Liu Liang, Su Sheng, Cao Yijia, et al.Kalman filtering based protection method of sustained satellite time synchronization attack[J]. Automation of Electric Power Systems, 2020, 44(10): 119-126.
[21] 贺中华, 何为, 贺玉成, 等. 皮肤烧伤深度检测的单边核磁共振浅层成像磁体系统[J]. 电工技术学报, 2019, 34(3): 449-458.
He Zhonghua, He Wei, He Yucheng, et al.Unilateral nuclear magnetic resonance superficial imaging magnet system for skin burn depth assessme[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 449-458.
[22] 刘婧, 刘国强. 电粒子成像方法及其正问题数值研究[J]. 电工技术学报, 2020, 35(22): 4621-4626.
Liu Jing, Liu Guoqiang.Electrical particles imaging method and numerical study on the forward problem[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4621-4626.
[23] 刘运华, 张波, 谢帆, 等. 多尺度和多物理场的电力电子变换器建模方法初探[J]. 电力系统自动化, 2020, 44(16): 61-69.
Liu Yunhua, Zhang Bo, Xie Fan, et al.Preliminary study on modeling methods with multiscale and multiphysics for power electronic converters[J]. Auto- mation of Electric Power Systems, 2020, 44(16): 61-69.
[24] Tobias K, Thorsten M B.Magnetic particle imaging[M]. Berlin: Springer-Verlag, 2012.
[25] Yan Xiaoheng, Pan Ye, Chen Weihua, et al.Simulation research on the forward problem of magnetoacoustic concentration tomography for mag- netic nanoparticles with magnetic induction in a saturation magnetization state[J]. Journal of Physics D: Applied Physics, 2020, 54(7): 1-10.
[26] 胡剑雄. 面向人体手指血糖无创核磁共振监测的多层Halbach型永磁体的研制[D]. 南京: 东南大学, 2017.
[27] Okada T, Matsumori H, Kosaka, et al. Hybrid excitation flux switching motor with permanent magnet placed at middle of field coil slots and high filling factor windings[J]. China Electrotechnical Society Transactions on Electrical Machines and Systems, 2019, 3(3): 248-258.
[28] 李长生, 马彪, 宋艳磊, 等. 无磁钢的研究概况和我国无磁钢的发展思路[J]. 河南冶金, 2014, 22(1): 1-7, 12.
Li Changsheng, Ma Biao, Song Yanlei, et al.The research progress and development ideas of non- magnetic steels in China[J]. Henan Metallurgy, 2014, 22(1): 1-7, 12.
[29] 底楠, 赵建林, 王志兵. 永磁体双磁环结构的磁场均匀性分[J]. 中国激光, 2009, 36(9): 2290-2294.
Di Nan, Zhao Jianlin, Wang Zhibing.Analysis on magnetic field homogeneity of dual-ring permanent magnets[J]. Chinese Journal of Lasers, 2009, 36(9): 2290-2294.
[30] 刘国强. 磁声成像技术[M]. 北京: 科学出版社, 2014.
[31] 刘洋洋, 杜强, 柯丽, 等. 磁性粒子成像线型零磁场设计及性能分析[J]. 电工技术学报, 2020, 35(10): 2088-2097.
Liu Yangyang, Du Qiang, Ke Li, et al.Design and analysis of magnetic field-free line in magnetic particle imaging[J]. Transactions of China Electro- technical Society, 2020, 35(10): 2088-2097.