Theory and Experiment of Tube Electromagnetic Flanging Based on Bidirectional Electromagnetic Force Loading
Zhang Wang1,2, Wang Yudong1, Li Yantao1,3, Yang Xinsen1,4, Qiu Li1,2
1. College of Electrical Engineering and New Energy Three Gorges University Yichang 443002 China; 2. Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station Yichang 443002 China; 3. Hubei Provincial Yi Ling District Power Supply Company Yichang 443100 China; 4. Foshan Power Supply Bureau of Guangdong Power Grid Co. Ltd Foshan 528000 China
Abstract:The flanging angle is difficult to reach 90° in the process of conventional single radial electromagnetic force flanging. Thus, an electromagnetic flanging system based on axial-radial bidirectional electromagnetic force loading mode is proposed to improve the flanging effect of pipe fittings. The simulation data show that compared with the electromagnetic flanging system with only radial coils, the strong axial electromagnetic force introduced by the bi-directional electromagnetic flanging system significantly enhances the axial flow of the material, and then improves the flanging angle. In addition, comparative experiments based on a specific aluminum tube (AA6061-O) verify the effectiveness of the new electromagnetic flanging method. The experimental results demonstrate that the flanging angle of the tube electromagnetic flanging method based on bidirectional electromagnetic force loading is three times that of the traditional single coil flanging mode. Obviously, the improvement of electromagnetic force applying mode can effectively tackle the problems existing in tube electromagnetic flanging and promote the comprehensive application of electromagnetic forming technology in industry.
张望, 王于東, 李彦涛, 杨新森, 邱立. 基于双向电磁力加载的管件电磁翻边理论与实验[J]. 电工技术学报, 2021, 36(14): 2904-2911.
Zhang Wang, Wang Yudong, Li Yantao, Yang Xinsen, Qiu Li. Theory and Experiment of Tube Electromagnetic Flanging Based on Bidirectional Electromagnetic Force Loading. Transactions of China Electrotechnical Society, 2021, 36(14): 2904-2911.
[1] Qiu Li, Yu Yijie, Deng Changzheng, et al.Analysis of electromagnetic force and deformation behavior in electromagnetic tube expansion with concave coil based on finite element method[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 0600705. [2] 胡胜龙, 左曙光, 刘明田. 开关磁阻电机非线性径向电磁力解析建模[J]. 电工技术学报, 2020, 35(6): 1189-1197. Hu Shenglong, Zuo Shuguang, Liu Mingtian.Analy- tical modeling of nonlinear radial electromagnetic force in switched reluctance motors[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1189-1197. [3] 黎刘欣, 王利桐, 梁贵书, 等. 压装组件中圆柱形母线的部分电感计算方法[J]. 电工技术学报, 2020, 35(增刊1): 1-9. Li Liuxin, Wang Litong, Liang Guishu, et al.Com- puting method for partial inductance of cylindrical busbar conductor[J]. Transactions of China Electro- technical Society, 2020, 35(S1): 1-9. [4] 邱立, 李彦涛, 苏攀, 等. 电磁成形中电磁技术问题研究进展[J]. 电工技术学报, 2019, 34(11): 2247-2259. Qiu Li, Li Yantao, Su Pan, et al.Research on electromagnetic problems in electromagnetic forming process[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2247-2259. [5] Qiu Li, Zhang Wang, Abu-siada A, et al. Electro- magnetic force distribution and wall thickness reduction of three-coil electromagnetic tube bulging with axial compression[J]. IEEE Access, 2020, DOI: 10.1109/ACCESS.2020.2969678. [6] 邱立, 余一杰, 聂小鹏, 等. 管件电磁胀形过程中的材料变形性能问题与电磁力加载方案[J]. 电工技术学报, 2019, 34(2): 212-218. Qiu Li, Yu Yijie, Nie Xiaopeng, et al.Study on material deformation performance and electro- magnetic force loading in electromagnetic tube expansion process[J]. Transactions of China Electro- technical Society, 2019, 34(2): 212-218. [7] Yu Haiping, Zheng Qiuli, Wang Shoulong, et al.The deformation mechanism of circular hole flanging by magnetic pulse forming[J]. Journal of Materials Processing Technology, 2018, S0924013618300682. [8] Yu Haiping, Chen Jie, Wei Liu, et al.Electro- magnetic forming of aluminum circular tubes into square tubes: experiment and numerical simulation[J]. Journal of Manufacturing Processes, 2018, 31: 613-623. [9] Cui Xiaohui, Mo Jianhua, Li Jianjun, et al.Electro- magnetic incremental forming (EMIF): a novel aluminum alloy sheet and tube forming technology[J]. Journal of Materials Processing Technology, 2014, 214(2): 409-427. [10] Qiu Li, Deng Kui, Li Yantao, et al.Analysis of coil temperature rise in electromagnetic forming with coupled cooling method[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, DOI: 10.3233/JAE-190062. [11] Qiu Li, Wang Chenglin, Abu-siada A, et al. Coil temperature rise and workpiece forming efficiency of electromagnetic forming based on half-wave current method[J]. IEEE Access, 2020, DOI: 10.1109/ ACCESS.2020.2965254. [12] Su Hongliang, Huang Liang, Li Jianjun, et al.Investigation on the forming process and the shape control in electromagnetic flanging of aluminum alloy[J]. Procedia Engineering, 2017, 207: 335-340. [13] Yu Haiping, Jin Yanye, Hu Lan, et al.Two-step method to improve geometry accuracy of elongated hole flanging by electromagnetic forming[J]. Inter- national Journal of Advanced Manufacturing Tech- nology, 2020, 106: 3117-3129. [14] Li Liang, Han Xiaotao, Peng Tao, et al.Space-time- controlled multi-stage pulsed magnetic field forming and manufacturing technology[C]//The 5th Inter- national Conference on High Speed Forming, Dortmund, Germany, 2012: 53-58. [15] 李亮. 我国多时空脉冲强磁场成形制造基础研究进展[J]. 中国基础科学, 2016, 18(4): 25-35, 63. Li Liang.Progress of the basic research on the space-time-controlled multi-stage pulsed magnetic field forming and manufacturing technology[J]. China Basic Science, 2016, 18(4): 25-35, 63. [16] Cao Quanliang, Li Zhenhao, Lai Zhipeng, et al.Analysis of the effect of an electrically conductive die on electromagnetic sheet metal forming process using the finite element-circuit coupled method[J]. The International Journal of Advanced Manu- facturing Technology, 2019, 101(1-4): 549-563. [17] 邱立, 杨新森, 常鹏, 等. 双线圈轴向压缩式管件电磁胀形电磁力分布规律与管件成形性能研究[J]. 电工技术学报, 2019, 34(14): 2855-2862. Qiu Li, Yang Xinsen, Chang Peng, et al.Electro- magnetic force distribution and forming performance in electromagnetic tube expansion process with two coils[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2855-2862. [18] Cao Quanliang, Lai Zhipeng, Xiong Qi, et al.Electro- magnetic attractive forming of sheet metals by means of a dual-frequency discharge current: design and implementation[J]. International Journal of Advanced Manufacturing Technology, 2016, 90: 309-316. [19] Cao Quanliang, Han Xiaotao, Lai Zhipeng, et al.Analysis and reduction of coil temperature rise in electromagnetic forming[J]. Journal of Materials Processing Technology, 2015, 225: 185-194. [20] Xiong Qi, Huang Hao, Xia Liangyu, et al.A research based on advance dual-coil electromagnetic forming method on flanging of small-size tubes[J]. Inter- national Journal of Advanced Manufacturing Tech- nology, 2019, 102: 4087-4094. [21] Li Zhong, Liu Shujie, Li Junping, et al.Effect of coil length and relative position on electromagnetic tube bulging[J]. International Journal of Advanced Manufa- cturing Technology, 2018, 97: 379-387. [22] Ouyang Shaowei, Li Xiaoxiang, Li Changxing, et al.Investigation of the electromagnetic attractive for- ming utilizing a dual-coil system for tube bulging[J]. Journal of Manufacturing Processes, 2020, 49: 102-115. [23] 范新凯, 王艳婷, 张保会. 柔性直流电网的快速电磁暂态仿真[J]. 电力系统自动化, 2017, 41(4): 92-97. Fan Xinkai, Wang Yanting, Zhang Baohui.Fast electromagnetic transient simulation for flexible DC power grid[J]. Automation of Electric Power Systems, 2017, 41(4): 92-97. [24] 熊奇. 大尺寸铝合金板件电磁成形设计与实现[D]. 武汉: 华中科技大学, 2016. [25] 邱立. 脉冲强磁场成形制造技术研究[D]. 武汉: 华中科技大学, 2012. [26] Kumar S, Ahmed M, Panthi S K.Effect of punch profile on deformation behaviour of AA5052 sheet in stretch flanging process[J]. Archives of Civil and Mechanical Engineering, 2020, 20(1): 1-17. [27] 张骁. 脉冲强磁场作用下管件胀拉成形数值模拟与实验研究[D]. 武汉: 华中科技大学, 2017. [28] 肖师杰. 平板电磁成形有限元模拟方法研究与线圈的设计和分析[D]. 武汉: 华中科技大学, 2012. [29] Qiu Li, Zhang Wang, Abu-siada A, et al. Analysis of electromagnetic force and formability of tube elec- tromagnetic bulging based on convex coil[J]. IEEE Access, 2020, DOI: 10.1109/ACCESS.2020.2974758. [30] Liu Xianlong, Huang Liang, Li Jianjun, et al.An electromagnetic incremental forming (EMIF) strategy for large-scale parts of aluminum alloy based on dual coil[J]. International Journal of Advanced Manufa- cturing Technology, 2019, 104(5): 1-21.