Abstract:Electromagnetic launch (EML) technology takes electric energy as the original organization form and achieves accurate control from information flow to energy flow. It involves deep cross-integration of multiple disciplines and fields such as electrical, material, information and control, and has significant advantages such as high launch kinetic energy, high system efficiency, high launch frequency, fast start time, strong continuous launch capability and strong load adjustable capability. It will become a new launch technology to replace the traditional mechanical launch and chemical-energy launch. In recent years, with the rapid development of integrated power technology, new composite materials, high-voltage and high-power switches and artificial intelligence, EML technology has set off a new round of research upsurge, and has great significance in the military and civilian fields to subvert the existing pattern. Based on the research achievements in EML field in the past 20 years, this paper introduces the technical characteristics and technical branches of EML, and summarizes five common technologies of EML system, such as pulsed energy storage, pulsed power conversion, pulsed linear machine, detection and control, high speed high overload guidance. The development status and applications in the field of military platform and weapons, civil and aerospace are reviewed. Meanwhile, the current challenges and countermeasures are pointed out, and the future development trend are proposed, such as cable-free electronic system, high performance materials composite and intelligent sensing control of the whole system, so as to provide a reference for subsequent research of EML technology. EML technology is another human progress in the use of energy, will become the inevitable trend of future launch methods, will have a profound impact on military, civilian, space and other fields.
马伟明, 鲁军勇. 电磁发射技术的研究现状与挑战[J]. 电工技术学报, 2023, 38(15): 3943-3959.
Ma Weiming, Lu Junyong. Research Progress and Challenges of Electromagnetic Launch Technology. Transactions of China Electrotechnical Society, 2023, 38(15): 3943-3959.
[1] 马伟明. 关于电工学科前沿技术发展的若干思考[J]. 电工技术学报, 2021, 36(22): 4627-4636. Ma Weiming.Thoughts on the development of frontier technology in electrical engineering[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4627-4636. [2] 马伟明, 鲁军勇. 电磁发射技术[J]. 国防科技大学学报, 2016, 38(6): 1-5. Ma Weiming, Lu Junyong.Electromagnetic launch technology[J]. Journal of National University of Defense Technology, 2016, 38(6): 1-5. [3] Ma Weiming, Lu Junyong.Thinking and study of electromagnetic launch technology[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1071-1077. [4] 鲁军勇, 马伟明. 电磁轨道发射理论与技术[M]. 北京: 科学出版社, 2020. [5] Ma Weiming, Lu Junyong, Liu Yingquan.Research progress of electromagnetic launch technology[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2197-2205. [6] Plant D P, Kirk J A, Anand D K.Prototype of a magnetically suspended flywheel energy storage system[C]//Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, Washington, DC, USA, 2002: 1485-1490. [7] 蒋书运, 卫海岗, 沈祖培. 飞轮储能技术研究的发展现状[J]. 太阳能学报, 2000, 21(4): 427-433. Jiang Shuyun, Wei Haigang, Shen Zupei.The situation of the flywheel energy storage research[J]. Acte Energiae Solaris Sinica, 2000, 21(4): 427-433. [8] 卫海岗, 戴兴建, 张龙, 等. 飞轮储能技术研究新动态[J]. 太阳能学报, 2002, 23(6): 748-753. Wei Haigang, Dai Xingjian, Zhang Long, et al.Recent advances in flywheel energy storage system[J]. Acta Energiae Solaris Sinica, 2002, 23(6): 748-753. [9] 陈峻岭, 姜新建, 朱东起, 等. 基于飞轮储能技术的新型UPS的研究[J]. 清华大学学报(自然科学版), 2004, 44(10): 1321-1324. Chen Junling, Jiang Xinjian, Zhu Dongqi, et al.UPS using flywheel energy storage[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(10): 1321-1324. [10] 张建成, 黄立培, 陈志业. 飞轮储能系统及其运行控制技术研究[J]. 中国电机工程学报, 2003, 23(3): 108-111. Zhang Jiancheng, Huang Lipei, Chen Zhiye.Research on flywheel energy storage system and its controlling technique[J]. Proceedings of the CSEE, 2003, 23(3): 108-111. [11] 徐衍亮, 赵建辉, 房建成. 高速储能飞轮用无铁心永磁无刷直流电动机的分析与设计[J]. 电工技术学报, 2004, 19(12): 24-28. Xu Yanliang, Zhao Jianhui, Fang Jiancheng.Analysis and design of coreless permanent magnet brushless DC machine in high-speed energy storage flywheel application[J]. Transactions of China Electrotechnical Society, 2004, 19(12): 24-28. [12] Yu Leping, Zhou Xiaohong, Lu Lu, et al.Recent developments of nanomaterials and nanostructures for high-rate lithium ion batteries[J]. ChemSusChem, 2020, 13(20): 5361-5407. [13] Li Mengjie, Yang Jixing, Shi Yeqing, et al.Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(5): e2107226. [14] 宋建龙, 王磊, 王莉. 锂电池倍率放电性能影响因素的研究[J]. 信息记录材料, 2020, 21(5): 3-6. Song Jianlong, Wang Lei, Wang Li.Research on the influencing factors of rate discharge performance of lithium battery[J]. Information Recording Materials, 2020, 21(5): 3-6. [15] 张若涛, 李蒙, 刘艳侠, 等. 长寿命高倍率锂离子电池的开发及工艺优化[J]. 电池, 2021, 51(1): 59-62. Zhang Ruotao, Li Meng, Liu Yanxia, et al.Development and technology optimization of long-life high rate Li-ion battery[J]. Battery Bimonthly, 2021, 51(1): 59-62. [16] 张文佳, 尹莲芳, 谢乐琼, 等. 影响高功率锂离子电池性能的因素[J]. 新材料产业, 2022(1): 62-64. [17] Zhang Xiao, Ju Zhengyu, Zhu Yue, et al.Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes[J]. Advanced Energy Materials, 2021, 11(2): 2000808. [18] Liebfried O, Brommer V, Scharnholz S, et al.Refurbishment of a 30-MJ-pulsed power supply for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1285-1289. [19] 王杰, 鲁军勇, 张晓, 等. 两型PFN模块的放电特性及优化[J]. 电机与控制学报, 2019, 23(8): 10-18, 27. Wang Jie, Lu Junyong, Zhang Xiao, et al.Discharge characteristics and optimization of two types of PFN modules[J]. Electric Machines and Control, 2019, 23(8): 10-18, 27. [20] 叶云岳. 直线电机原理与应用[M]. 北京: 机械工业出版社, 2000: 15-16. [21] Laithwaite E R.Induction machines for special purposes[M]. London: Newnes, 1966. [22] Boldea I, Tutelea L N, Xu Wei, et al.Linear electric machines, drives, and MAGLEVs: an overview[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7504-7515. [23] Patterson D, Monti A, Brice C, et al.Design and simulation of an electromagnetic aircraft launch system[C]//Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 2002: 1950-1957. [24] Mu Shujun, Chai Jianyun, Sun Xudong, et al.A variable pole pitch linear induction motor for electromagnetic aircraft launch system[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1346-1351. [25] 林庆华, 栗保明. 基于瞬态多物理场求解器的电磁轨道炮发射过程建模与仿真[J]. 兵工学报, 2020, 41(9): 1697-1707. Lin Qinghua, Li Baoming.Modeling and simulation of electromagnetic railgun launching process based on a transient multi-physical field solver[J]. Acta Armamentarii, 2020, 41(9): 1697-1707. [26] 李帅. 电磁轨道炮口径对电磁特性与温度场影响研究[D]. 秦皇岛: 燕山大学, 2020. [27] Nie Jianxin, Ren Ming, Kang Xiaoping, et al.Study on mechanical character of armature and rail with non-rectangular cross section in EML[C]//2012 16th International Symposium on Electromagnetic Launch Technology, Beijing, China, 2012: 1-5. [28] 李腾达, 冯刚, 刘少伟, 等. 四轨电磁发射器轨道构型对电流分布的影响[J]. 兵器材料科学与工程, 2021, 44(5): 5-11. Li Tengda, Feng Gang, Liu Shaowei, et al.Influence of rail configuration of four-rail electromagnetic launcher on current distribution[J]. Ordnance Material Science and Engineering, 2021, 44(5): 5-11. [29] Wei Shengqun, Wu Qihui, Wang Jinlong.Turbo aided cyclic prefix reconstruction for coded single-carrier systems with frequency-domain equalization (SC-FDE)[J]. Journal of Electronics (China), 2007, 24(6): 726-731. [30] 苗海玉, 刘少伟, 刘明, 等. 串联增强型四极轨道发射器电磁推力仿真[J]. 空军工程大学学报(自然科学版), 2018, 19(3): 71-76. Miao Haiyu, Liu Shaowei, Liu Ming, et al.Simulation and analysis of electromagnetic propulsion for series-connected augmented quadrupole railgun[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19(3): 71-76. [31] Tang Bo, Xu Yingtao, Wan Gang, et al.Method of ballistic control and projectile rotation in a novel railgun[J]. Defence Technology, 2018, 14(5): 628-634. [32] Zhang Tao, Li Haitao, Zhang Cunshan, et al.Design and simulation of a multimodule superconducting inductive pulsed-power supply model for a railgun system[J]. IEEE Transactions on Plasma Science, 2019, 47(2): 1352-1357. [33] 侯俊超. 电磁轨道发射电磁场及电磁力动态特性研究[D]. 太原: 中北大学, 2021. [34] Kaye R J, Cnare E C, Cowan M, et al.Design and performance of Sandia’s contactless coilgun for 50 mm projectiles[J]. IEEE Transactions on Magnetics, 1993, 29(1): 680-685. [35] Kaye R J.Operational requirements and issues for coilgun electromagnetic launchers[J]. IEEE Transactions on Magnetics, 2005, 41(1): 194-199. [36] Zhang Tao, Guo Wei, Lin Fuchang, et al.Design and testing of 15-stage synchronous induction coilgun[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1089-1093. [37] 马名中, 马伟明, 王公宝, 等. 多定子直线感应电动机任务交班控制策略[J]. 电机与控制学报, 2012, 16(3): 1-7. Ma Mingzhong, Ma Weiming, Wang Gongbao, et al.Assignment alternating strategy of multiple primaries linear induction motor[J]. Electric Machines and Control, 2012, 16(3): 1-7. [38] 马名中, 马伟明, 郭灯华, 等. 多定子直线感应电机模型及间接矢量控制算法[J]. 电机与控制学报, 2013, 17(2): 1-6. Ma Mingzhong, Ma Weiming, Guo Denghua, et al.Model and indirect vector control of multi-primary linear induction motor[J]. Electric Machines and Control, 2013, 17(2): 1-6. [39] Davis B S, Denison T, Kaung J.A monolithic high-g SOI-MEMS accelerometer for measuring projectile launch and flight accelerations[C]//SENSORS, 2004 IEEE, Vienna, Austria, 2005: 296-299. [40] 张合. 振动与冲击在引信技术中的应用展望[J]. 振动、测试与诊断, 2019, 39(2): 235-241, 438. Zhang He.Application prospect of vibration and shock in fuze technology[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(2): 235-241, 438. [41] 鲁军勇, 冯军红, 李开, 等. 超高速制导弹丸研究综述[J]. 哈尔滨工程大学学报, 2021, 42(10): 1418-1427. Lu Junyong, Feng Junhong, Li Kai, et al.Review on guided hypervelocity projectiles[J]. Journal of Harbin Engineering University, 2021, 42(10): 1418-1427. [42] 李晓阳, 王伟魁, 汪守利, 等. MEMS惯性传感器研究现状与发展趋势[J]. 遥测遥控, 2019, 40(6): 1-13, 21. Li Xiaoyang, Wang Weikui, Wang Shouli, et al.Status and development trend of MEMS inertial sensors[J]. Journal of Telemetry, Tracking and Command, 2019, 40(6): 1-13, 21. [43] Richard S Anderson, David S Hanson, Anthony S Kourepenis.Evolution of low-cost MEMS inertial system technologies[C]//Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, USA, 2001: 1332-1342. [44] George T Schmidt.INS/GPS technology trends[R]. NATO RTO Lecture Series, RTO-EN-SET-116, Low-Cost Navigation Sensors and Integration Technology, 2011. [45] Barbour N, Schmidt G.Inertial sensor technology trends[J]. IEEE Sensors Journal, 2001, 1(4): 332-339. [46] 王擎宇, 谭大力, 张晓谞, 等. 航母阻拦装置指标体系研究[J]. 舰船科学技术, 2021, 43(9): 154-159. Wang Qingyu, Tan Dali, Zhang Xiaoxu, et al.Research on the index system of arresting gear on aircraft carrier[J]. Ship Science and Technology, 2021, 43(9): 154-159. [47] 张晓谞, 张育兴, 刘勇, 等. 阻拦索张力控制方法[J]. 国防科技大学学报, 2016, 38(6): 49-53. Zhang Xiaoxu, Zhang Yuxing, Liu Yong, et al.Method of arresting cable tension control[J]. Journal of National University of Defense Technology, 2016, 38(6): 49-53. [48] Li Peifei, Zhang Lei, Ouyang Bin, et al.Nonlinear effects of three-level neutral-point clamped inverter on speed sensorless control of induction motor[J]. Electronics, 2019, 8(4): 402. [49] 姚江帆, 欧阳斌, 翟小飞. 双定子杯形转子感应电机磁路计算[J]. 船电技术, 2017, 37(2): 48-53. Yao Jiangfan, Ouyang Bin, Zhai Xiaofei.Magnetic circuit calculation of dual-stator induction machine with drag-cup rotor[J]. Marine Electric & Electronic Engineering, 2017, 37(2): 48-53. [50] 毕柯,汤智胤,李想,等. 滑轮缓冲器的阻尼特性分析与优化[J]. 海军工程大学学报, 2018, 30(3): 60-64. Bi Ke, Tang Zhiyin, Li Xiang,et al.Damping characteristics analysis and optimization research of sheave damper[J]. Journal of Naval University of Engineering, 2018, 30(3): 60-64. [51] 张成亮, 刘德志, 马名中, 等. 进口压力对涡轮阻尼器性能影响计算分析和实验研究[J]. 工程热物理学报, 2018, 39(4): 767-772. Zhang Chengliang, Liu Dezhi, Ma Mingzhong, et al.CFD and experiment research on the inlet pressure effect on turbine damper[J]. Journal of Engineering Thermophysics, 2018, 39(4): 767-772. [52] 李鹏飞, 汪光森, 马名中, 等. 大扭矩液压制动器建模分析[J]. 海军工程大学学报, 2018, 30(6): 23-29. Li Pengfei, Wang Guangsen, Ma Mingzhong, et al.Modeling and analysis of high pulling torque hydraulic brake[J]. Journal of Naval University of Engineering, 2018, 30(6): 23-29. [53] 马伟明, 鲁军勇, 李湘平. 电磁发射超高速一体化弹丸[J]. 国防科技大学学报, 2019, 41(4): 1-10. Ma Weiming, Lu Junyong, Li Xiangping.Electromagnetic launch hypervelocity integrated projectile[J]. Journal of National University of Defense Technology, 2019, 41(4): 1-10. [54] 蔺志强, 陈桂明, 许令亮, 等. 电磁发射技术在导弹武器系统中的应用研究[J]. 飞航导弹, 2020(7): 67-71. Lin Zhiqiang, Chen Guiming, Xu Lingliang, et al.Research on application of electromagnetic launch technology in missile weapon system[J]. Aerodynamic Missile Journal, 2020(7): 67-71. [55] 朱清浩, 宋汝刚. 美国潜艇鱼雷发射装置使用方式初探[J]. 鱼雷技术, 2012, 20(3): 215-219. Zhu Qinghao, Song Rugang.Preliminary exploration on launch modes of U.S. submarine torpedo launchers[J]. Torpedo Technology, 2012, 20(3): 215-219. [56] McNab I R. Electromagnetic augmentation can reduce space launch costs[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1047-1054. [57] McNab I R. Preliminary study on the EM launch of nano-satellites[C]//2017 IEEE 21st International Conference on Pulsed Power (PPC), Brighton, 2017: 70-74. [58] 张晓, 鲁军勇, 侯重远, 等. 应用地面电磁发射清除空间碎片方法[J]. 国防科技大学学报, 2016, 38(6): 54-58. Zhang Xiao, Lu Junyong, Hou Chongyuan, et al.Space debris removal method utilizing earth electromagnetic launch[J]. Journal of National University of Defense Technology, 2016, 38(6): 54-58. [59] Ehresmann M, Gabrielli R A, Herdrich G, et al.Lunar based massdriver applications[J]. Acta Astronautica, 2017, 134: 189-196. [60] 肖飞, 马伟明, 罗毅飞, 等. 大功率IGBT器件及其组合多时间尺度动力学表征研究综述[J]. 国防科技大学学报, 2021, 43(6): 108-126. Xiao Fei, Ma Weiming, Luo Yifei, et al.Review of dynamic characterization research of high power IGBTs and their combinations under multiple time scales[J]. Journal of National University of Defense Technology, 2021, 43(6): 108-126. [61] Luo Yifei, Xiao Fei, Liu Binli, et al.A physics-based transient electrothermal model of high-voltage press-pack IGBTs under HVDC interruption[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 5660-5669. [62] Liu Binli, Xiao Fei, Luo Yifei, et al.A multi-timescale prediction model of IGBT junction temperature[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(3): 1593-1603. [63] 闫涛, 刘贵民, 朱硕, 等. 电磁轨道材料表面损伤及强化技术研究现状[J]. 材料导报, 2018, 32(1): 135-140, 148. Yan Tao, Liu Guimin, Zhu Shuo, et al.Current research status of electromagnetic rail materials surface failure and strengthen technology[J]. Materials Review, 2018, 32(1): 135-140, 148. [64] Siopis M J, Neu R W.Materials selection exercise for electromagnetic launcher rails[J]. IEEE Transactions on Magnetics, 2013, 49(8): 4831-4838.