电工技术学报  2022, Vol. 37 Issue (19): 5056-5066    DOI: 10.19595/j.cnki.1000-6753.tces.221242
电工理论与新技术 |
J-TEXT托卡马克上电磁弹丸注入系统的X型电枢设计
陈忠勇1,2, 张维康1,2, 唐俊辉3, 李峰1,2, 夏胜国3
1.磁约束聚变与等离子体国际合作联合实验室(华中科技大学电气与电子工程学院) 武汉 430074;
2.强电磁工程与新技术国家重点实验室(华中科技大学电气与电子工程学院) 武汉 430074;
3.脉冲功率技术教育部重点实验室(华中科技大学) 武汉 430074
Design of X-Type Armature of Electromagnetic Pellet Injection System on J-TEXT Tokamak
Chen Zhongyong1,2, Zhang Weikang1,2, Tang Junhui3, Li Feng1,2, Xia Shengguo3
1. International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China;
2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China;
3. Key Laboratory of Pulsed Power Technology Ministry of Education Huazhong University of Science and Technology Wuhan 430074 China
全文: PDF (5789 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 国际热核聚变实验堆(ITER)计划是我国参与规模最大的国际科技合作项目,目标是验证大型托卡马克装置实现聚变能的可行性。等离子体大破裂是ITER安全运行面临的最大威胁,会对装置造成严重的损坏,因此缓解破裂危害是ITER亟待解决的关键问题。目前缓解破裂危害的基本策略是主动注入大量粒子,但现有的破裂缓解系统尚不能完全满足ITER的需求。该文通过分析现有破裂缓解系统的特点,介绍J-TEXT托卡马克上新一代用于破裂缓解的电磁弹丸注入系统(EMI),该系统使用电磁力发射弹丸,可有效提高弹丸的注入速度并缩短响应时间,克服了其他系统的局限性。电枢是EMI的核心部件,在发射中起决定性作用,通过介绍尾翼接触型电枢的结构及功能,说明这类电枢运用于EMI时在减速阶段存在枢轨电接触性能不足、运动稳定性不够高等局限性,由此根据EMI减速阶段对电枢性能产生的特殊需求,设计了一款具有X型结构的新型固体电枢。仿真结果表明,电枢的电磁、机械性能满足发射要求,电接触特性良好。在发射性能试验中,电枢完成了加速至520m/s后主动减速至0m/s;电枢-弹丸分离性能试验中实现了电枢、弹丸的稳定分离,弹丸的飞行速度为358m/s,且该速度能随着加速能量的增加进一步提高。EMI为托卡马克等离子体破裂缓解贡献了一种高效注入杂质的先进方案,该文提出的X型电枢具有良好的发射性能,为EMI提供了一种优良的新型固体电枢结构及设计方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈忠勇
张维康
唐俊辉
李峰
夏胜国
关键词 托卡马克破裂缓解系统电磁发射轨道炮固体电枢    
Abstract:The International Thermonuclear Experimental Reactor (ITER) program is the largest international scientific and technological cooperation project that China has participated in, which goal is to verify the scientific and technical feasibility of using large tokamak devices to obtain fusion energy. The major plasma disruption is the biggest threat to the safe operation of ITER, resulting in the damage of the device. Therefore, the disruption mitigation is a key scientific and technical problem to be solved urgently. At present, the basic strategy for disruption mitigation is to actively inject a large number of particles, but the existing disruption mitigation systems cannot fully meet the requirements of ITER. By analyzing the characteristics of existing systems, this paper introduces a new generation of Electromagnetic Pellet Injection system (EMI) for disruption mitigation on J-TEXT tokamak. The system uses electromagnetic force to launch pellets, which can effectively improve the injection speed and reduced response time, overcoming the limitations of other systems. The armature is the core component of EMI. By introducing the structure and function of the tail contact armature, it is shown that when this type of armature is used in EMI, there are insufficient armature-rail electrical contact performance and motion stability in the deceleration stage. According to the special requirements of the armature performance in the EMI deceleration stage, a new solid armature with an X-shaped structure is designed. The simulation results show that the electromagnetic and mechanical properties of the armature meet the launch requirements, and the electrical contact characteristics are brilliant. In the launch performance test, the armature is accelerated to 520m/s and then actively decelerated to 0m/s; in the armature-pellet separation test, the stable separation of the armature and pellet is achieved, and the flight velocity of pellet is 358m/s, and this velocity can be further increased with the increase of acceleration energy. EMI provides an advanced scheme for efficient disruption mitigation on tokamak, and the X-type armature proposed in this paper has good launch performance which provides an excellent new type of armature structure and design method for EMI.
Key wordsTokamak    disruption mitigation system    electromagnetic launch    railgun    solid armature   
收稿日期: 2022-06-29     
PACS: TM33  
  TL67  
基金资助:国家重点研发计划(2019YFE03010004)和国家自然科学基金(51821005)资助项目
通讯作者: 陈忠勇 男,1978年生,教授,博士生导师,研究方向为托卡马克等离子体破裂及破裂缓解。E-mail:zychen@hust.edu.cn   
作者简介: 张维康 男,1998年生,硕士研究生,研究方向为托卡马克破裂缓解及电磁发射。E-mail:m202071656@hust.edu.cn
引用本文:   
陈忠勇, 张维康, 唐俊辉, 李峰, 夏胜国. J-TEXT托卡马克上电磁弹丸注入系统的X型电枢设计[J]. 电工技术学报, 2022, 37(19): 5056-5066. Chen Zhongyong, Zhang Weikang, Tang Junhui, Li Feng, Xia Shengguo. Design of X-Type Armature of Electromagnetic Pellet Injection System on J-TEXT Tokamak. Transactions of China Electrotechnical Society, 2022, 37(19): 5056-5066.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.221242          https://dgjsxb.ces-transaction.com/CN/Y2022/V37/I19/5056