Characteristic Analysis and Experiment of the Equivalent Simulation System for Null-Flux Electrodynamic Suspension
Wang Yiyu1, Cai Yao2, Song Xuliang1, Li Gang1, Ma Guangtong1
1. State Key Laboratory of Traction Power Southwest Jiaotong University Chengdu 610031 China; 2. School of Electrical Engineering Southwest Jiaotong University Chengdu 610031 China
Abstract:An equivalent null-flux electrodynamic suspension (EDS) simulation system was proposed, and its working principle and structure were described. The electromagnetic force characteristics of the system were analyzed by finite element simulation and experiment. A 3-D finite element model of the system was established, and then the effects of the coil velocity, the vertical and transverse displacement of the magnet, and the coil pitch on system performance were analyzed. A laboratory prototype was developed and tested. The variation of levitation force under different working conditions was tested. Comparisons between simulation and experiment have verified the accuracy and reliability of the finite element model. In addition, the laboratory prototype can realize the levitation of the magnet, which can provide theoretical support for the application and design of the null-flux EDS in rail transit.
王一宇, 蔡尧, 宋旭亮, 李刚, 马光同. 零磁通式电动悬浮等效模拟系统的特性分析与实验[J]. 电工技术学报, 2021, 36(8): 1628-1635.
Wang Yiyu, Cai Yao, Song Xuliang, Li Gang, Ma Guangtong. Characteristic Analysis and Experiment of the Equivalent Simulation System for Null-Flux Electrodynamic Suspension. Transactions of China Electrotechnical Society, 2021, 36(8): 1628-1635.
[1] 魏庆朝, 孔永健. 磁悬浮铁路系统与技术[M]. 北京: 中国科学技术出版社, 2003. [2] 程建峰, 苏晓峰. 磁悬浮列车的发展及应用[J]. 铁道车辆, 2003, 41(11): 14-17. Cheng Jianfeng, Su Xiaofeng.Development and application of magnetic levitation trains[J]. Rolling Stock, 2003, 41(11): 14-17. [3] 王家素, 王素玉. 超导技术应用[M]. 成都: 成都科技大学出版社, 1995. [4] Lee H W, Kim K C, Lee J.Review of Maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. [5] 温旭辉, 徐善纲. 电动式磁悬浮系统分析综述[J]. 电工电能新技术, 1995, 14(3): 7-11. Wen Xuhui, Xu Shangang.Analysis of electro- dynamic levitation systems[J]. Advanced Technology of Electrical Engineering and Energy, 1995, 14(3): 7-11. [6] Powell J R, Danby G T. High speed transport by magnetically suspended trains[C]//ASME Winter Annual Meeting, New York, 1966: 66-WA/RR-5. [7] Guderjahn C A, Wipf S L, Fink H J, et al.Magnetic suspension and guidance for high speed rockets by superconducting magnets[J]. Journal of Applied Physics, 1969, 40(5): 2133-2140. [8] Davis L C, Borcherts R H.Superconducting paddle wheels, screws, and other propulsion units for high- speed ground transportation[J]. Journal of Applied Physics, 1973, 44(7): 3294-3299. [9] Kyotani Y.Recent progress by JNR on Maglev[J]. IEEE Transactions on Magnetics, 1988, 24(2): 804-807. [10] Nakashima H.The superconducting magnet for the Maglev transport system[J]. IEEE Transactions on Magnetics, 1994, 30(4): 1572-1578. [11] Rote D M, Cai Yigang.Review of dynamic stability of repulsive-force Maglev suspension systems[J]. IEEE Transactions on Magnetics, 2002, 38(2): 1383-1390. [12] 秦伟, 范瑜, 徐洪泽, 等. 高温超导运动磁场电磁Halbach初级结构直线感应磁悬浮电机[J]. 电工技术学报, 2018, 33(23): 5427-5434. Qin Wei, Fan Yu, Xu Hongze, et al.A linear induction Maglev motor with HTS traveling magnetic electromagnetic Halbach array[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5427-5434. [13] Ohashi S, Ueshima T.Control method of the semi- active damper coil system in the superconducting magnetically levitated bogie against vertical and pitching oscillation[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4542-4545. [14] Ono M, Koga S, Ohtsuki H.Japan's superconducting Maglev train[J]. IEEE Instrumentation and Measure- ment Magazine, 2002, 5(1): 9-15. [15] Kim M, Jeong J H, Lim J, et al.Design and control of levitation and guidance systems for a semi-high-speed Maglev train[J]. Journal of Electrical Engineering and Technology, 2017, 12(1): 117-125. [16] 万尚军, 钱金根, 倪光正, 等. 电动悬浮型磁悬浮列车悬浮与导向技术剖析[J]. 中国电机工程学报, 2000, 20(9): 22-25, 31. Wan Shangjun, Qian Jingen, Ni Guangzheng, et al.Study of the levitation and guidance technology for electrodynamic suspension Maglev vehicle[J]. Pro- ceedings of the CSEE, 2000, 20(9): 22-25, 31. [17] 李春生, 杜玉梅, 夏平畴, 等. 直线型Halbach磁体和导体板构成的电动式磁悬浮系统的分析及实验[J]. 电工技术学报, 2009, 24(1): 18-22. Li Chunsheng, Du Yumei, Xia Pingchou, et al.Analysis and experimental testing of EDS Maglev with linear Halbach and conducting sheet[J]. Transa- ctions of China Electrotechnical Society, 2009, 24(1): 18-22. [18] 朱熙, 范瑜, 李硕, 等. 旋转磁场电动式磁悬浮装置的状态方程与悬浮力控制[J]. 电工技术学报, 2011, 26(12): 1-6. Zhu Xi, Fan Yu, Li Shuo, et al.State equations and lift force control of rotating field electrodynamic levitation device[J]. Transactions of China Electro- technical Society, 2011, 26(12): 1-6. [19] 王志涛, 蔡尧, 龚天勇, 等. 基于场-路-运动耦合模型的超导电动悬浮列车特性研究[J]. 中国电机工程学报, 2019, 39(4): 1162-1171. Wang Zhitao, Cai Yao, Gong Tianyong, et al.Characteristic studies of the superconducting electro- dynamic suspension train with a field-circuit-motion coupled model[J]. Proceedings of the CSEE, 2019, 39(4): 1162-1171. [20] 陈殷, 张昆仑. 板式双边永磁电动悬浮电磁力计算[J]. 电工技术学报, 2016, 31(24): 150-156. Chen Yin, Zhang Kunlun.Calculation of electro- magnetic force of plate type null double side permanent magnet electrodynamic suspension[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 150-156.