Abstract:Although the double-fed induction generator can retain part of the active reserve capacity to participate in the system frequency regulation under the conventional overspeed and load reduction control, there are problems such as reduced power generation efficiency of wind turbine, reduced speed adjustment range, and frequent start-up of pitch angle control. Therefore, this paper combines the control characteristics of the grid-side converter of the doubly-fed wind turbine, and proposes an adaptive control strategy for the inertia and primary frequency modulation of the doubly-fed induction generator that takes into account the supercapacitor energy storage state-of-charge (SOC) control. Combining the advantages of inertia and droop control on the basis of maintaining energy storage SOC, this paper proposes a proportional coefficient model that can automatically adjust the two frequency modulation controls to participate in frequency modulation with the value of frequency deviation and the rate of change of frequency deviation. It can realize the smooth switching between the two frequency modulation modes, improve the frequency adjustment effect, and improve the disturbance resistance and self-stabilizing of a single wind turbine. Simulation experiments show that the doubly-fed induction generator's inertial support, primary frequency adjustment capability and power generation efficiency are significantly improved compared with the conventional primary frequency control, Which provides new ideas and new applications for the transformation and upgrading of the doubly-fed induction generator.
颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039.
Yan Xiangwu, Cui Sen, Chang Wenfei. Primary Frequency Regulation Control Strategy of Doubly-Fed Induction Generator Considering Supercapacitor SOC Feedback Adaptive Adjustment. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039.
[1] 王涛, 诸自强, 年珩. 非理想电网下双馈风力发电系统运行技术综述[J]. 电工技术学报, 2020, 35(3): 455-471. Wang Tao, Zhu Ziqiang, Nian Heng.Review of operation technology of doubly-fed induction generator-based wind power system under nonideal grid conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 455-471. [2] 李世春, 吕翔生, 钟浩, 等. 大规模双馈风电机组参与调频的电网自适应低频减载策略[J]. 电力系统自动化, 2019, 43(15): 109-120. Li Shichun, Lü Xiangsheng, Zhong Hao, et al.Grid adaptive low-frequency load shedding strategy for large-scale doubly-fed wind turbines participating in frequency modulation[J]. Automation of Electric Power Systems, 2019, 43(15): 109-120. [3] 张祥宇, 付媛, 王毅, 等. 含虚拟惯性与阻尼控制的变速风电机组综合PSS控制器[J]. 电工技术学报, 2015, 30(1): 159-169. Zhang Xiangyu, Fu Yuan, Wang Yi, et al.Integrated PSS controller for variable speed wind turbines with virtual inertia and damping control[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 159-169. [4] 李少林, 王伟胜, 张兴, 等. 风力发电对系统频率影响及虚拟惯量综合控制[J]. 电力系统自动化, 2019, 43(15): 64-73. Li Shaolin, Wang Weisheng, Zhang Xing, et al.Effect of wind power generation on system frequency and virtual inertia comprehensive control[J]. Automation of Electric Power Systems, 2019, 43(15): 64-73. [5] 穆钢, 蔡婷婷, 严干贵, 等. 双馈风电机组参与持续调频的双向功率约束及其影响[J]. 电工技术学报, 2019, 34(8): 1750-1759. Mu Gang, Cai Tingting, Yan Gangui, et al.Bidirectional power constraints and influence of doubly fed induction generator participating in continuous frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1750-1759. [6] 赵晶晶, 吕雪, 符杨, 等. 基于可变系数的双馈风机虚拟惯量与超速控制协调的风光柴微电网频率调节技术[J]. 电工技术学报, 2015, 30(5): 59-68. Zhao Jingjing, Lü Xue, Fu Yang, et al.Frequency adjustment technology of wind and light diesel microgrid based on variable coefficient-based double inertia fan virtual inertia and overspeed control[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 59-68. [7] 胥国毅, 胡家欣, 郭树锋, 等. 超速风电机组的改进频率控制方法[J]. 电力系统自动化, 2018, 42(8): 39-44. Xu Guoyi, Hu Jiaxin, Guo Shufeng, et al.Improved frequency control strategy for over-speed wind turines[J]. Automation of Electric Power Systems, 2018, 42(8): 39-44. [8] Vidyanandan K V, Senroy N.Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE Transactions on Power System, 2013, 28(2): 837-846. [9] 付媛, 王毅, 张祥宇, 等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报, 2014, 34(27): 4706-4716. Fu Yuan, Wang Yi, Zhang Xiangyu, et al.Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J]. Proceedings of the CSEE, 2014, 34(27): 4706-4716. [10] Fu Yuan, Wang Yi, Zhang Xiangyu.Integrated wind turbine controller with virtual inertia and primary frequency responses for grid dynamic frequency support[J]. IET Renewable Power Generation, 2017, 8(11): 1129-1137. [11] 张昭遂, 孙元章, 李国杰, 等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35(17): 20-25. Zhang Zhaosui, Sun Yuanzhang, Li Guojie, et al.Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J]. Automation of Electric Power Systems, 2011, 35(17): 20-25. [12] 姚伟, 文劲宇, 黄莹, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646. Yao Wei, Wen Jinyu, Huang Ying, et al.Prospect of technology for large-scale wind farm participating into power grid frequency regulation[J]. Power System Technology, 2014, 38(3): 638-646. [13] 刘巨, 姚伟, 文劲宇, 等. 一种基于储能技术的风电场虚拟惯量补偿策略[J]. 中国电机工程学报, 2015, 35(7): 1596-1605. Liu Ju, Yao Wei, Wen Jinyu, et al.A wind farm virtual inertia compensation strategy based on energy storage system[J]. Proceedings of CSEE, 2015, 35(7): 1596-1605. [14] Daniel-Ioan, Vaclav Knap, Maciej Swierczynski, et al.Operational of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: a battery lifetime perspective[J]. IEEE Transactions on Industry Application, 2017, 53(1): 430-438. [15] 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908. Li Xinran, Cui Xiwen, Huang Jiyuan, et al.Adaptive control strategy for battery energy storage power supply participating in primary frequency modulation of power grid[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3897-3908. [16] 赵晶晶, 李敏, 何欣芹. 基于限转矩控制的风储联合调频控制策略[J]电工技术学报, 2019, 34(33): 4982-4990. Zhao Jingjing, Li Min, He Xinqin.Coordinated control strategy of wind power and energy storage in frequency regulation based on torque limit control[J]. Transactions of China Electrotechnical Society, 2019, 34(33): 4982-4990. [17] 蒋平, 熊华川. 混合储能系统平抑风力发电输出功率波动控制方法设计[J]. 电力系统自动化, 2013, 37(1): 122-127. Jiang Ping, Xiong Huachuan.A control scheme design for smoothing wind power fluctuation with hybrid energy system[J]. Automation of Electric Power Systems, , 2013, 37(1): 122-127. [18] Shiddiqyunus A M, Mohammad A S, et al.Application of SMES to enhance the dynamic performance of DFIG during voltage sag and swell[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(4): 5702009. [19] Australian energy market operator. Black system south Australia 28 September 2016. Black system south Australia 28 September 2016: final report [R]. Australian energy market operator, 28 Mar. 2017: 130, 45, 55, 37. http://apo. org. au/node/74886 [20] The British Electricity System Operator. Appendices to the technical report on the events of 9 August2019 [R]. The British Electricity System Operator, 2019: 7-10, 90, 39-43. [21] 刘辉, 葛俊, 巩宇, 等. 风电场参与电网一次调频最优方案选择与风储协调控制策略研究[J]. 全球能源互联网, 2019, 2(1): 44-52. Liu Hui, Ge Jun, Gong Yu, et al.Optimization scheme selection of wind farm participation in grid primary frequency modulation and study of wind-storage coordination control strategy[J]. Journal of Global Energy Interconnection, 2019, 2(1): 44-52. [22] 苗璐. 含风电及多端口直流—直流换流器的直流系统建模与控制[D]. 武汉: 华中科技大学, 2016. [23] 颜湘武, 崔森, 宋子君, 等. 基于超级电容储能控制的双馈风电机组惯量与一次调频策略[J]. 电力系统自动化, 2020, 44(14): 111-129. Yan Xiangwu, Cui Sen, Song Zijun, et al.Inertia and primary frequency modulation strategy of doubly-fed wind turbine based on supercapacitor energy storage control[J]. Automation of Electric Power Systems, 2020, 44(14): 111-129. [24] Execcutivesummary[EB/OL]. http://www. ceic. unsw. edu. au/centers/ vrb >. [25] Ponce de León C, Frías-Ferrer A, Gonzá lez-Garcí a J, et al. Redox flow cells f or energy conversion[J]. Journal of Power Sources, 2006, 160(1): 716-732. [26] Electrochemical capacitor module for hybrid transport application[EB/OL]. http://www. esma-cap. com. [27] Electrochemical energy storage-a mission to the USA, report of a DTI global watch mission [EB/OL]. [2004-11]. http://www. Global watch online. com. [28] 北极星电力网. 清洁发展的技术方案: 虚拟同步机与储能技术[EB/OL]. [2016-11-30]. http://www. sohu. com/a/ 120289888_131990. Polaris Power Network. Clean development technical solutions: virtual synchronization machine and energy storage technology[EB/OL]. [2016-11-30]. http://www. sohu. com/a/ 120289888_131990.