Abstract:In order to obtain low input current total harmonic distortion (THD) of boundary conduction mode (BCM) Boost power factor correction (PFC) converter, an improved constant on-time (COT) control is proposed in this paper, and its influence on input current THD and efficiency is also analyzed. Furthermore, an improved zero-current-detection (ZCD) method is adopted to realize the early detection for ZCD signal. The influence of signal propagation delay is compensated, and the reverse resonance process is shortened or even eliminated, thereby improving the input current THD without increasing control complexity. Finally, an experimental prototype of a 160W BCM Boost PFC converter is established to verify the feasibility and effectiveness of improved COT control.
[1] 曹勇, 杨飞, 李春晖, 等. 不同耦合系数下的交错并联电流连续模式Boost功率因数校正变换器的传导电磁干扰[J]. 电工技术学报, 2019, 34(10): 2176-2186. Cao Yong, Yang Fei, Li Chunhui, et al.Conducted electromagnetic interference of interleaved con-tinuous current mode Boost power factor correction converter with different coupling coefficients[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2176-2186. [2] 任小永, 白雷, 惠琦, 等. 一种快速动态响应低电压纹波功率因数校正变换器的控制策略[J]. 电工技术学报, 2019, 34(14): 2936-2945. Ren Xiaoyong, Bai Lei, Hui Qi, et al.Control strategy of power factor correction converter for fast dynamic response and low output voltage ripple[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(14): 2936-2945. [3] 梁国壮, 田涵雷, 王子园, 等. 一种单级无桥式高功率因数无电解电容AC-DC LED驱动器[J]. 电工技术学报, 2019, 34(16): 3396-3407. Liang Guozhuang, Tian Hanlei, Wang Ziyuan, et al.A single-stage bridgeless, electrolytic capacitor-free AC-DC LED driver with high power factor[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3396-3407. [4] 阎铁生, 李明洪, 周国华, 等. 一种一次侧控制的Buck-Flyback单级功率因数校正变换器LED驱动电路[J]. 电工技术学报, 2019, 34(16): 3355-3365. Yan Tiesheng, Li Minghong, Zhou Guohua, et al.A Buck-Flyback single-stage power factor correction converter for LED driving circuit with primary-side control[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3355-3365. [5] 张峰, 谢运祥, 胡炎申, 等. 临界模式混合光伏微型逆变器的特性分析[J]. 电工技术学报, 2020, 35(6): 1290-1302. Zhang Feng, Xie Yunxiang, Hu Yanshen, et al.Characteristics analysis for a boundary conduction mode hybrid-type photovoltaic micro-inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1290-1302. [6] 熊伟. 飞机座椅电源的研究[D]. 天津: 中国民航大学, 2012. [7] Yang Sungpei, Chen Shinyu, Huang Chaoming.Analysis, modeling and controller design of CRM PFC Boost AC/DC converter with constant on-time control IC FAN7530[C]//IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 2014: 354-359. [8] Chen Yanglin, Chen Yaoming.Line current dis-tortion compensation for DCM/CRM Boost PFC converters[J]. IEEE Transactions on Power Electro-nics, 2016, 31(3): 2026-2038. [9] 郭哲辉. CRM Boost PFC变换器的变导通时间控制[D]. 南京: 南京航空航天大学, 2018. [10] RTCA DO-160G, Environmental conditions and test procedures for airborne equipment[S]. 华盛顿: 美国航空无线电技术委员会, 2010. [11] Adragna C.Design-oriented analysis of ECOT-controlled DCM/CCM boundary Boost PFC pre-regulators[C]//AEIT International Annual Conference, Cagliari, Italy, 2017: 1-6. [12] Gritti G.Improvement of constant-on-time control for transition mode PFC Boost pre-regulators[C]//IEEE Applied Power Electronics Conference and Expo-sition, New Orleans, LA, USA, 2020: 1268-1272. [13] Fairchild application note AN-8035: design con-sideration for boundary conduction mode power factor correction (PFC) using FAN7930[Z]. Fairchild Semiconductor, California, USA, 2010. [14] UCC28063 datasheet: Natural interleaving transition-mode PFC controller with improved audible noise immunity[Z]. Texas Instruments, Dallas, Texas, USA, 2014. [15] Su Yiping, Ni Chialung, Chen Chunyen, et al.Boundary conduction mode controlled power factor corrector with line voltage recovery and total harmonic distortion improvement techniques[J]. IEEE Transa-ctions on Industrial Electronics, 2014, 61(7): 3220-3231. [16] Tsai J C, Chen Chilin, Chen Yiting, et al.Perturbation on-time (POT) technique in power factor correction controller for low total harmonic distortion and high power factor[J]. IEEE Transactions on Power Elec-tronics, 2013, 28(1): 199-212. [17] Ren Xiaoyong, Guo Zhehui, Wu Yu, et al.Adaptive LUT-based variable on-time control for CRM Boost PFC converters[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 8123-8136. [18] Ren Xiaoyong, Wu Yu, Guo Zhehui, et al.An online monitoring method of circuit parameters for variable on-time control in CRM Boost PFC converters[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1786-1797. [19] Kim J W, Youn H S, Moon G W.A digitally controlled critical mode Boost power factor corrector with optimized additional on time and reduced circulating losses[J]. IEEE Transactions on Power Electronics, 2015, 30(6): 3447-3456. [20] Ren Xiaoyong, Zhou Yuting, Guo Zhehui, et al.Analysis and improvement of capacitance effects in 360-800Hz variable on-time controlled CRM Boost PFC converters[J]. IEEE Transactions on Power Electronics, 2020, 35(7): 7480-7491. [21] Huang Zhengrong, Liu Zhengyang, Li Qiang, et al.Microcontroller-based MHz totem-pole PFC with critical mode control[C]//IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, 2016: 1-8. [22] Ren Xiaoyong, Wu Yu, Chen Qianhong, et al.Accurate operation analysis based variable on-time control for 360-800Hz CRM Boost PFC con-verters[J]. IEEE Transactions on Industrial Electro-nics, 2020, 67(8): 6845-6853.