电工技术学报  2021, Vol. 36 Issue (13): 2880-2892    DOI: 10.19595/j.cnki.1000-6753.tces.201007
高电压与放电 |
基于振动信号的断路器机械零部件故障程度识别
杨秋玉1, 王栋2, 阮江军3, 翟鹏飞4
1.福建工程学院电子电气与物理学院 福州 350118;
2.国网河南省电力公司电力科学研究院 郑州 450052;
3.武汉大学电气与自动化学院 武汉 430072;
4.中能电气股份有限公司 福州 350002
Fault Severity Estimation Method for Mechanical Parts in Circuit Breakers Based on Vibration Analysis
Yang Qiuyu1, Wang Dong2, Ruan Jiangjun3, Zhai Pengfei4
1. School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou 350118 China;
2. Electric Power Research Institute of State Grid Henan Electric Power Company Zhengzhou 450052 China;
3. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China;
4. CEE Power Co. Ltd Fuzhou 350002 China
全文: PDF (10327 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 如何有效识别高压断路器机械零部件故障严重程度是目前还未解决的问题,针对该问题,提出一种基于振动信号混沌吸引子形态特性的断路器零部件故障程度识别方法。为了更好地提取零部件早期故障的微弱故障特征,首先将振动信号按照断路器动作时序进行分时分割处理;然后提出一种参数自适应的信号分解方法,将分时振动信号各模态分量自适应地分离出来;最后重构模态分量混沌吸引子,利用混沌吸引子形态特性判断断路器零部件故障严重程度。两种不同型号断路器的试验结果表明,振动信号的模态分量混沌吸引子对故障程度具有较高的敏感度,正常与故障状态下的吸引子形态差异明显、吸引子形态随故障程度的加剧表现出一定的变化规律。该方法可为识别高压断路器机械零部件故障严重程度提供一条新思路。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王栋
杨秋玉
王栋
阮江军
阮江军
翟鹏飞
翟鹏飞
关键词 振动信号高压断路器故障程度自适应信号分解混沌吸引子振动信号微弱故障特征提取自适应信号分解混沌吸引子微弱故障特征提取    
Abstract:How to effectively identify the fault severity for mechanical parts in high-voltage (HV) circuit breakers (CBs) is an unsolved issue so far. To address this issue, this paper proposes a fault severity identification method using morphological characteristics of chaotic attractor of CB vibration signal. First, in order to accurately extract the weak fault features for the early fault mechanical parts, the vibration signals are firstly divided into several sub-signals according to the CB's operation sequence. Then we propose an adaptive signal decomposition method for separating the mode components from the divided sub-signals. Finally, the chaotic attractor of the mode component is reconstructed and the fault severity of mechanical part is diagnosed by the morphological characteristics of the attractor. The experimental results of two different types of CBs show that the chaotic attractor is highly sensitive to the severity of fault, and that the shape of the attractors in normal and faulty states is significantly different. The shape of the attractor varies with the aggravation of the fault severity. This method could provide a new way to identify the fault severity for mechanical parts in HVCB.
Key wordsHigh-voltage circuit breakers    fault severity    vibration signals    High-voltage circuit breakers    fault severity    self-adaptive signal decomposition    chaotic attractor    vibration signals    self-adaptive signal decomposition    weak fault feature extraction    chaotic attractor    weak fault feature extraction   
收稿日期: 2020-08-11     
PACS: TM561  
通讯作者: 杨秋玉 男,1986年生,副教授,研究方向为电气设备在线监测与状态评估、断路器多物理场分析等。E-mail:qiuyu.yang@fjut.edu.cn   
作者简介: 王 栋 男,1983年生,高级工程师,研究方向为电气设备状态检测与评估、电工装备大规模并行数值计算等。E-mail:65440451@qq.com
引用本文:   
杨秋玉, 王栋, 阮江军, 翟鹏飞. 基于振动信号的断路器机械零部件故障程度识别[J]. 电工技术学报, 2021, 36(13): 2880-2892. Yang Qiuyu, Wang Dong, Ruan Jiangjun, Zhai Pengfei. Fault Severity Estimation Method for Mechanical Parts in Circuit Breakers Based on Vibration Analysis. Transactions of China Electrotechnical Society, 2021, 36(13): 2880-2892.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.201007          https://dgjsxb.ces-transaction.com/CN/Y2021/V36/I13/2880