Zhang Ming1,2, Li Dingchen1,2, Li Chuan1,2, Li Jiawei1,2, Yang Yong1
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China; 2. International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
Abstract:Ion wind, also known as “electrohydrodynamic (EHD)”, is a phenomenon in which high-energy electrons generated by gas discharges drive the movement of neutral particles, and thus appear as a macroscopic fluid. Due to the advantages of low noise, low power consumption, fast response speed, and no mechanical moving parts, ion wind has made great progress in the research and application of ion wind in the past few decades. This paper summarizes and analyzes the recent research progress of ion wind from two aspects of practical application and actuator structure improvement. The practical application of ion wind is mainly concentrated in many fields such as food drying, temperature control, propulsion, combustion support, air purification and so on. Solutions to problems in various fields are proposed. The improvement of the structure of the ion wind actuator mainly solves the problems of the discharge by-products of the ion wind, the low intensity of the ion wind, the influence of the charged particles, the large occupied space, and the electrode corrosion in the above application fields. Finally, a prospect is made for the future research of ion wind, which provides ideas for the research of ion wind.
张明, 李丁晨, 李传, 李家玮, 杨勇. 离子风的应用研究进展[J]. 电工技术学报, 2021, 36(13): 2749-2766.
Zhang Ming, Li Dingchen, Li Chuan, Li Jiawei, Yang Yong. Research Progress in the Application of Ion Wind. Transactions of China Electrotechnical Society, 2021, 36(13): 2749-2766.
[1] Shin D H, Jang D K, Sohn D K, et al.Control of boundary layer by ionic wind for heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 131: 189-195. [2] Myron R.A history of the electric wind[J]. American Journal of Physics, 1962, 30: 366-371. [3] Wang Rui, Zhang Min, Mujumdar A S.Effects of vacuum and microwave freeze drying on microstructure and quality of potato slices[J]. Journal of Food Engineering, 2010, 101(2): 131-139. [4] Bai Yaxiang, Qu Min, Luan Zhongqi, et al.Electrohydrodynamic drying of sea cucumber (Stichopus japonicus)[J]. LWT - Food Science and Technology, 2013, 54(2): 570-576. [5] Martynenko A, Astatkie T, Defraeye T.The role of convection in electrohydrodynamic drying[J]. Journal of Food Engineering, 2020, 271: 109777. [6] Hsu C-P, Jewell-Larsen N E, Krichtafovitch I A, et al. Miniaturization of electrostatic fluid accelerators[J]. Journal of Microelectromechanical Systems, 2007, 16(4): 809-815. [7] 王维, 杨兰均, 高洁, 等. 多针-网电极离子风激励器推力与推功比的实验研究[J]. 物理学报, 2013, 62(7): 292-298. Wang Wei, Yang Lanjun, Gao Jie, et al.Experimental study on the thrust and the ratio of thrust to power of multi-points/grid ionic wind exciter[J]. Acta Physica Sinica, 2013, 62(7): 292-298. [8] 杨兰均,王维,林岑,等. 电晕放电离子风实验与理论研究进展及应用发展前景[J]. 高电压技术, 2016, 42(4): 1100-1108. Yang Lanjun, Wang Wei, Lin Cen, et al.Experimental and theoretical research progress in ionic wind produced by corona discharge and its application[J]. High Voltage Engineering, 2016, 42(4): 1100-1108. [9] 高国强, 颜馨, 彭开晟, 等. 等离子体流动技术在列车减阻应用上的初步研究[J]. 电工技术学报, 2019, 34(4): 855-862. Gao Guoqiang, Yan Xin, Peng Kaisheng, et al.Primary research on drag reduction of train based on plasma flow[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 855-862. [10] Ganguly B N.Hydrocarbon combustion enhancement by applied electric field and plasma kinetics[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B239-B246. [11] Volkov E N, Kornilov V N, de Goey L P H. Experimental evaluation of DC electric field effect on the thermoacoustic behaviour of flat premixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(1): 955-962. [12] Yamamoto T, Velkofft H R.Electrohydrodynamics in an electrostatic precipitator[J]. Journal of Fluid Mechanics, 1981, 108(1981): 1-18. [13] 谷建龙, 杨波, 薛晓红, 等. 高速载气及离子风对粉尘粒子预荷电的影响[J]. 河北大学学报(自然科学版), 2007, 27(增刊): 102-105. Gu Jianlong, Yang Bo, Xue Xiaohong, et al.Effect of high-velocity carrier gas and ion wind on the pre-charged dust particles[J]. Journal of Hebei Universi ty(Natural Science Edition), 2007, 27(S): 102-105. [14] Timmermann E, Prehn F, Schmidt M, et al.Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations[J]. Journal of Physics D: Applied Physics, 2018, 51(16): 164003. [15] 李亚龙, 张晓星, 崔兆仑, 等. NH3对DBD降解SF6影响的试验研究[J]. 电工技术学报, 2019, 34(24): 5262-5269. Li Yalong, Zhang Xiaoxing, Cui Zhaolun, et al.Experiment of effect of ammonia on degradation of sulfur hexafluoride by dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5262-5269. [16] Johnson M J, Go D B.Recent advances in electrohydrodynamic pumps operated by ionic winds: a review[J]. Plasma Sources Science and Technology, 2017, 26(10): 103002 [17] 张立, 杨兰均, 韩佳一, 等. 离子风与来流对平板协同散热的实验研究[J]. 中国电机工程学报, 2019, 39(17): 5263-5270. Zhang Li, Yang Lanjun, Han Jiayi, et al.Experimental study on synergistic heat transfer on plate between ion wind and incoming flow[J]. Proceedings of the CSEE, 2019, 39(17): 5263-5270. [18] 沈欣军, 曾宇翾, 沈钦臻, 等. 基于粒子成像测速法的正-负电晕放电下线-板式电除尘器内流场测试[J]. 高电压技术, 2014, 40(9): 2757-2763. Shen Xinjun, Zeng Yuxuan, Shen Qinzhen, et al.Measurements of flow field in wire-plate electrostatic precipitator during positive or negative corona discharge using PIV method[J]. High Voltage Engineering, 2014, 40(9): 2757-2763. [19] 缪劲松, 陈阳, 张宇, 等. 针-板电极正负电晕放电离子风的对比研究[J]. 北京理工大学学报, 2017, 37(1): 61-66. Miao Jinsong, Chen Yang, Zhang Yu, et al.Comparison of positive and negative ionic wind in needle-to-plate corona discharge[J]. Transactions of Beijing Institute of Technology, 2017, 37(1): 61-66. [20] 聂万胜,程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6): 722-734. Nie Wansheng, Cheng Yufeng, Che Xueke.A review on dielectric barrier discharge plasma flow control[J]. Advances in Mechanics, 2012, 42(6): 722-734. [21] 李文慧, 姜慧, 杨帆, 等. 高频高压激励环形表面介质阻挡放电特性实验研究[J]. 电工技术学报, 2020, 35(15): 3539-3550. Li Wenhui, Jiang Hui, Yang Fan, et al.Experimental study on ring surface dielectric barrier discharge characteristics of high frequency and high voltage excitation[J]. Transactions of China Electrotechnical Society, 2020, 34(15): 3539-3550. [22] 李庆, 侯雪超, 张文婷, 等. 电极结构对离子风流场影响的数值模拟[J]. 高电压技术, 2020: 46(12): 4334-4340. Li Qing, Hou Xuechao, Zhang Wenting, et al.Numerical simulation of influence of electrode structures on ion wind flow field[J]. High Voltage Engineering, 2020, 46(12): 4334-4340. [23] 杨振兴, 向晓东, 陈旺生. 新型双极电晕放电器的放电特性[J]. 高电压技术, 2008, 34(5): 1068-1066. Yang Zhenxing, Xiang Xiaodong, Chen Wangsheng.Characteristics of novel bipolar corona discharger[J]. High Voltage Engineering, 2008, 34(5): 1062-1066. [24] Stishkov Y, Samusenko A, Vinaykin M.Computer simulation of corona discharge and experimental investigation of ionic wind[C]//International Symposium on Electrohydrodynamics, Sarawak, Malaysia, 2009: 32-39. [25] Zhang J F, Wang S, Zeng M J, et al.Experimental and numerical investigation on flow characteristics of large cross-sectional ionic wind pump with multiple needles-to-mesh electrode[J]. Journal of Fluids Engineering, 2019, 141(3): 031105. [26] Lv Fangcheng, Song Jingxuan, Wang Ping, et al.Influencing factors of flow field of ionic wind induced by corona discharge in a multi-needle-to-net electrode structure under direct-current voltage[J]. IEEE Access, 2019, 7: 123671-123678. [27] Wang Ping, Song Jingxuan, Ruan Haoou, et al.Development and morphological characterization of ion wind in an inhomogeneous DC field[J]. AIP Advances, 2019, 9(5): 055002. [28] 袁均祥, 邱炜, 郑程, 等. 空气放电离子风特性的研究[J]. 中国电机工程学报, 2009, 29(13): 110-116. Yuan Junxiang, Qiu Wei, Zheng Cheng, et al.Study on characteristics of ionic wind from atmosphere discharge[J]. Proceedings of the CSEE, 2009, 29(13): 110-116. [29] Zhao Pengfei, Sherlie P, Subrata R.Efficient needle plasma actuators for flow control and surface cooling[J]. Applied Physics Letters, 2015, 107(3): 033501. [30] Belan M, Messanelli F.Compared ionic wind measurements on multi-tip corona and DBD plasma actuators[J]. Journal of Electrostatics, 2015, 76: 278-287. [31] Defoort E, Bellanger R, Batiot-Dupeyrat C, et al.Ionic wind produced by a DC needle-to-plate corona discharge with a gap of 15mm[J]. Journal of Physics D: Applied Physics, 2020, 53(17): 175202. [32] Wang S, Qu J G, Kong L J, et al.Numerical and experimental study of heat-transfer characteristics of needle-to-ring-type ionic wind generator for heated-plate cooling[J]. International Journal of Thermal Sciences, 2019, 139: 176-185. [33] Lee S J, Li L, Kwon K, et al.Parallel integration of ionic wind generators on PCBs for enhancing flow rate[J]. Microsystem Technologies, 2014, 21(7): 1465-1471. [34] Li L, Lee S J, Kim W, et al.An empirical model for ionic wind generation by a needle-to-cylinder dc corona discharge[J]. Journal of Electrostatics, 2015, 73: 125-130. [35] Zhang Yu, Liu Lijuan, Chen Yang, et al.Characteristics of ionic wind in needle-to-ring corona discharge[J]. Journal of Electrostatics, 2015, 74: 15-20. [36] Drews A M, Cademartiri L, Whitesides G M, et al.Electric winds driven by time oscillating corona discharges[J]. Journal of Applied Physics, 2013, 114(14): 143302. [37] Chen She, Van den Berg R G W, Nijdam S. The effect of DC voltage polarity on ionic wind in ambient air for cooling purposes[J]. Plasma Sources Science and Technology, 2018, 27(5): 055021. [38] Zhang Jianfei, Kong Lingjian, Qu Jingguo, et al.Numerical and experimental investigation on configuration optimization of the large-size ionic wind pump[J]. Energy, 2019, 171: 624-630. [39] Zhou Desheng, Tang Jingfeng, Kang Putong, et al.Effects of magnetic field intensity on ionic wind characteristics[J]. Journal of Electrostatics, 2018, 96: 99-103. [40] Feng Jie, Wang Changhong, Liu Qingming, et al.Enhancement of heat transfer via corona discharge by using needle-mesh and needle-fin electrodes[J]. International Journal of Heat and Mass Transfer, 2019, 130: 640-649. [41] Fylladitakis E D, Moronis A X, Kiousis K N.Experimental evaluation of a needle-to-grid EHD pump prototype for semiconductor cooling applications[J]. International Journal of Circuits, 2014, 8: 337-342. [42] Johnson M J, David B Go.Impingement cooling using the ionic wind generated by a low-voltage piezoelectric transformer front[J]. Frontiers in Mechanical Engineering, 2016, 2(24): 00007. [43] Nels E Jewell-Larsen S V K, Igor A Krichtafovitch, Vivi J, et al. Modeling of corona-induced electrohydrodynamic flow with COMSOL multiphysics[C]// ESA Annual Meeting on Electrostatics, Minneapolis, MN, 2008: 1-13. [44] Fylladitakis E D, Moronis A X, Kiousis K.Design of a prototype EHD air pump for electronic chip cooling applications[J]. Plasma Science and Technology, 2014, 16(5): 491-501. [45] Sato S, Furukawa H, Komuro A, et al.Successively accelerated ionic wind with integrated dielectric-barrier-discharge plasma actuator for low-voltage operation[J]. Scientific Reports, 2019, 9: 5813. [46] Liu Wenzheng, Hu Wenlong, Zhai Hao, et al.Study of ionic wind based on dielectric barrier discharge of carbon fiber spiral electrode[J]. Plasma Science and Technology, 2020, 22(3): 034002. [47] Yu Hongjian, Bai Aizhi, Yang Xiaowei, et al.Electrohydrodynamic drying of potato and process optimization[J]. Journal of Food Processing and Preservation, 2017, 42(2): e13492. [48] 张立, 杨兰均, 喻梦晗, 等. 均匀电场和极不均匀电场对水蒸发的影响[J]. 电工技术学报, 2019, 34(18): 3920-3927. Zhang Li, Yang Lanjun, Yu Menghan, et al.The influence of uniform electric field and extremely non-uniform electric field on water evaporation[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3920-3927. [49] Ding Changjiang, Lu Ju, Song Zhiqing.Electrohydrodynamic drying of carrot slices[J]. PloS One, 2015, 10(4): e0124077. [50] Martynenko A, Zheng W.Electrohydrodynamic drying of apple slices: energy and quality aspects[J]. Journal of Food Engineering, 2016, 168: 215-222. [51] Defraeye T, Martynenko A.Electrohydrodynamic drying of multiple food products: evaluating the potential of emitter-collector electrode configurations for upscaling[J]. Journal of Food Engineering, 2019, 240: 38-42. [52] Chen Ingyoun, Guo Meizuo, Yang Kaishing, et al.Enhanced cooling for LED lighting using ionic wind[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 285-291. [53] Chen Ingyoun, Chen Chienjen, Wang Chichuan.Influence of electrode configuration on the heat transfer performance of a LED heat source[J]. International Journal of Heat and Mass Transfer, 2014, 77: 795-801. [54] 岳永刚,丁兆军,王科,等. 气体放电对金属平板强化传热作用的研究[J]. 中国电机工程学报, 2006, 26(3): 91-105. Yue Yonggang, Ding Zhaojun, Wang Ke, et al.Study on heat transfer enhancement of a heated metal plate with gas discharges[J]. Proceedings of the CSEE, 2006, 26(3): 91-105. [55] Baudin N, Mcevoy J, Rouzes M, et al.Experimental investigation of ionic wind cooling in plate fin heatsinks and needle electrode arrangements[C]// Proceedings of the 2019 Eighteenth IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, 2019: 810-814. [56] Rashkovan A, Sher E, Kalman H.Experimental optimization of an electric blower by corona wind[J]. Applied Thermal Engineering, 2002, 22(14): 1587-1599. [57] Knap M, Duga J, Lui T C.Ionic wind generator on LED lighting application[C]//20th International Workshop on Thermal Investigations of ICs and Systems, Greenwich, England, 2014: 1-5. [58] Wang Jing, Cai Yixi, Bao Weiwei, et al.Experimental study of high power LEDs heat dissipation based on corona discharge[J]. Applied Thermal Engineering, 2016, 98: 420-429. [59] Wang Jing, Cai Yixi, Li Xiaohua, et al.Experimental investigation of high-power light-emitting diodes' thermal management by ionic wind[J]. Applied Thermal Engineering, 2017, 122: 49-58. [60] Wang Jing, Cai Yixi, Li Xiaohua, et al.Electrically-induced ionic wind flow distribution and its application for LED cooling[J]. Applied Thermal Engineering, 2018, 138: 346-353. [61] Wang Jing, Cai Yixi, Li Xiaohua, et al.Ionic wind development in corona discharge for LED cooling[J]. IEEE Transactions on Plasma Science, 2018, 46(5): 1821-1830. [62] Wang Jing, Cai Yixi, Li Xiaohua, et al.Experimental study on optical-thermal associated characteristics of LED car lamps under the action of ionic wind[J]. Microelectronics Reliability, 2018, 82: 113-123. [63] Shin D H, Sohn D K, Ko H S.Analysis of thermal flow around heat sink with ionic wind for high-power LED[J]. Applied Thermal Engineering, 2018, 143: 376-384. [64] Andojo Ongkodjojo Ong, Alexis R Abramson, Tien N C.Optimized and microfabricated ionic wind pump array as a next generation solution for electronics cooling systems[C]//13th IEEE InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, 2012: 1306-1311. [65] Andojo Ongkodjojo Ong, Alexis R Abramson, Tien N C.Electrohydrodynamic microfabricated ionic wind pumps for thermal management applications[J]. Journal of Heat Transfer, 2014, 136(6): 061703. [66] Ramadhan A A, Kapur N, Summers J L, et al.Numerical development of EHD cooling systems for laptop applications[J]. Applied Thermal Engineering, 2018, 139: 144-156. [67] Roth J R, Dai Xin.Optimization of the aerodynamic plasma actuator as an electrohydrodynamic(EHD) electrical device[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, DOI:10.251416.2006-1203. [68] Kwak D Y, Nelson R C.Vortical flow control over delta wings with different sweep back angles using DBD plasma actuators[C]//5th Flow Control Conference, 2010, DOI:10.2514/6.2010-4837. [69] Mark R, Subrata R.Numerical investigation of serpentine plasma actuators for separation control at low reynolds number[C]// 41st AIAA Fluid Dynamics Conference and Exhibit, Honolulu, Hawaii, 2011, DOI:10.2514/6.2011-3990. [70] 任军学, 刘宇, 江兴流, 等. 电飘机升力机制和效率的研究[J]. 航空动力学报, 2010, 25(6): 1395-1400. Ren Junxue, Liu Yu, Jiang Xingliu, et al.Investigation of the lifter's lift mechanism and efficiency[J]. Journal of Aerospace Power, 2010, 25(6): 1395-1400. [71] 王维, 杨兰均, 刘帅, 等. 线-铝箔电极电晕放电激励器的推力理论与实验研究[J]. 物理学报, 2015, 64(10): 15024-15030. Wang Wei, Yang Lanjun, Liu Shuai, et al.Theoretical and experimental study of thrust produced by corona discharge exciter in wire-aluminum foil electrode configration[J]. Acta Physica Sinica., 2015, 64(10): 15024-15030. [72] Monrolin N, Plouraboué F, Praud O.Electrohy-drodynamic thrust for in-atmosphere propulsion[J]. AIAA Journal, 2017, 55(2): 1-10. [73] Blaze labs research[EB/OL]. [2018-09-22]. http:// www.blazelabs.com. [74] FESTO. B-IONICairfish[EB/OL]. [2016-01-24]. http:// www. festo.com/cms/zh_corp/9762_10353. htm#id_10353. [75] Xu Haofeng, He Yiou, Strobel K L, et al.Flight of an aeroplane with solid-state propulsion[J]. Nature, 2018, 563(7732): 532-535. [76] Wilson J, Perkins H D, Thompson W K.An investigation of ionic wind propulsion[J]. USA: National Aeronautics and Space Administration, 2009. [77] Starikovsaia S M.Plasma assisted ignition and combustion[J]. Journal of Physics D: Applied Physics, 2006, 39(16): R265-R299. [78] Zhang Yang, Wu Yuxin, Yang Hairui, et al.Effect of high-frequency alternating electric fields on the behavior and nitric oxide emission of laminar non-premixed flames[J]. Fuel, 2013, 109: 350-355. [79] Kuhl J, Seeger T, Zigan L, et al.On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields[J]. Combustion and Flame, 2017, 176: 391-399. [80] Gallagher M J, Vaze N, Gangoli S, et al.Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge[J]. IEEE Transactions on Plasma Science, 2007, 35(5): 1501-1510. [81] Schmidt M, Timmermann E, Kettlitz M, et al.Combined electric wind and non-thermal plasma for gas cleaning[J]. International Journal of Plasma Environmental Science & Technology, 2018, 11(2): 133-137. [82] Liang W J, Lin T H.The characteristics of ionic wind and its effect on electrostatic precipitators[J]. Aerosol Science and Technology, 1994, 20(4): 330-344. [83] Wang Yifan, Gao Wenchao, Zhang Hao, et al.Insights into the role of ionic wind in honeycomb electrostatic precipitators[J]. Journal of Aerosol Science, 2019, 133: 83-95. [84] Zhang Jianping, Wang Shuai, Xu Dacheng, et al.Analysis of PM2.5 collection efficiency in a wire-cylinder ESP with ionic wind effect under multi-field coupling[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 60(4): 565-577. [85] 沈恒, 钟方川, 亢燕铭, 等. 两种实际板型下电除尘器中的电流体动力学流动[J]. 高电压技术, 2017, 43(2): 541-546. Shen Heng, Zhong Fangchuan, Kang Yanming, et al.Electrohydrodynamic flows in two real electrode geometry of electrostatic precipitator[J]. High Voltage Engineering, 2017, 43(2): 541-546. [86] 闫克平, 李树然, 郑钦臻, 等. 电除尘技术发展与应用[J]. 高电压技术, 2017, 43(2): 476-486. Yan Keping, Lishuran, Zheng Qinzhen, et al.Development and application of electrostatic precipitation technology[J]. High Voltage Engineering, 43(2): 476-486. [87] Shen Heng, Yu Wanxuan, Jia Hongwei, et al.Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes[J]. Journal of Electrostatics, 2018, 95: 61-70. [88] Yamamoto T, Abe T, Mimura T, et al.Electrohydrodynamically-assisted electrostatic preci-pitator for collection of low resistive dust[C]// IEEE Industry Applications Society Annual Meeting, Alberta, Canada, 2008: 42-46. [89] Chang Qianyun, Zheng Chenghang, Gao Xiang, et al.Systematic approach to optimization of submicron particle agglomeration using[J]. Aerosol and Air Quality Research, 2015, 15: 2709-2719. [90] Dau V T, Dinh T X, Tran C D, et al.Particle precipitation by bipolar corona discharge ion winds[J]. Journal of Aerosol Science, 2018, 124: 83-94. [91] Hoening S A, W Yvon Dr, Tucson. Apparatus for extracting water vapor from air: US, 6302944B1[P].2001-10-16. [92] 吴伟宾,郭莉钰. 离子风技术在空气净化器中的应用[J]. 家电科技, 2015, 2015(9): 74-75. Wu Weibin, Guo Liyu.Application of ion wind technology in air purifier[J]. Home Appliance Technology, 2015, 2015(9): 74-75. [93] Duan Lijuan, Jiang Nan, Lu Na, et al.A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions[J]. Plasma Science and Technology, 2018, 20(5): 61-70. [94] Li Meng, Zheng Libiao, Zhang Xiaomin, et al.Ozone synthesis from oxygen in narrow-gap hybrid discharge integrated with oxide coating: the role of surface catalytic reactions[J]. Plasma Processes and Polymers, 2020, 17(7): e1900272. [95] Guo He, Jiang Nan, Wang Huijuan, et al.Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO2/WO3 composites: mechanism and degradation pathway[J]. Journal of Hazardous Materials, 2019, 371: 666-676. [96] Tirumalar, Go D B. Multi-electrode assisted corona discharge for electrohydrodynamic flow generation in narrow channels[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(6): 1854-1863. [97] Erfani R, Zare-Behtash H, Hale C, et al.Development of DBD plasma actuators: the double encapsulated electrode[J]. Acta Astronautica, 2015, 109: 132-143. [98] Yoshida K, Johnson M J, Go D B.Enhancement of thin air jets produced by ring-shaped dielectric barrier charges using an auxiliary electrode[J]. Journal of Electrostatics, 2017, 87: 293-301. [99] Van T D, Thien X D, Terebessy T, et al.Ion wind generator utilizing bipolar discharge in parallel pin geometry[J]. IEEE Transactions on Plasma Science, 2016, 44(12): 2979-2987. [100] Van T D, Thien X D, Terebessy T, et al.Bipolar corona discharge based air flow generation with low net charge[J]. Sensors and Actuators A-Physical, 2016, 244: 146-155. [101] Wang Ronggang, Zhang Yu, Jiang Zhaorui, et al.New design of ion blower based on needle-dielectric-needle bipolar corona discharge[J]. IEEE Access, 2019, 7: 129192-129199. [102] Hsu C P, Jewell-Larsen N E, Sticht C, et al. Heat transfer enhancement measurement for microfabricated electrostatic fluid accelerators[C]//24th IEEE SEMI-THERM Symposium, San Jose, 2008: 32-38. [103] Jewell Larsen N E, Joseph G G, Honer K A, et al. Scaling laws for electrohydrodynamic air movers[C]// 8th ASME/JSME Thermal Engineering Joint Conference, Honolulu, HI, 2011: 865-873. [104] 林岑,王维,杨兰均,等. 离子风激励器对平板型热源强化对流散热特性的实验研究[J]. 中国电机工程学报, 2017, 37(8): 2446-2454. Lin Cen, Wang Wei, Yang Lanjun, et al.Experimental study on convective heat transfer enhancement of a heated plate by ionic wind generator[J]. Proceedings of the CSEE, 2017, 37(8): 2446-2454. [105] Dau V T, Dinh T X, Tran C D, et al.Dual-pin electrohydrodynamic generator driven by alternating current[J]. Experimental Thermal and Fluid Science, 2018, 97: 290-295. [106] Johnson M J, Go D B.Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air[J]. Journal of Applied Physics, 2015, 118(24): 243304. [107] Noll C G, Lawless P A.Comparison of germanium and silicon needles as emitter electrodes for air ionizers[J]. Journal of Electrostatics, 1998, 44(3-4): 221-238. [108] Ye Jianchun, Li Jun, Chen Xiaohong, et al.Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration[J]. Chinese Physics B, 2019, 28(9): 095202.