电工技术学报  2021, Vol. 36 Issue (11): 2233-2244    DOI: 10.19595/j.cnki.1000-6753.tces.200437
电力系统与综合能源 |
基于改进深度残差收缩网络的电力系统暂态稳定评估
卢锦玲, 郭鲁豫
华北电力大学电气与电子工程学院 保定 071003
Power System Transient Stability Assessment Based on Improved Deep Residual Shrinkage Network
Lu Jinling, Guo Luyu
School of Electrical and Electronic Engineering North China Electric Power University Baoding 071003 China
全文: PDF (1487 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对电力系统暂态稳定评估中,电力系统同步相量测量装置(PMU)量测数据在采集和传输过程可能存在噪声问题,以及由于暂态稳定与失稳样本不平衡,导致基于数据驱动的暂态稳定评估模型训练的倾向性和误判后果严重问题,提出基于改进深度残差收缩网络(IDRSN)的电力系统暂态稳定评估方法。首先将底层量测电气量构建成特征图形式作为模型输入,利用模型深层结构建立输入与稳定结果之间的映射关系。面对噪声问题,模型通过注意力机制,采用软阈值函数自动学习噪声阈值,减小噪声及无关特征干扰;并通过焦点损失函数(FL),引入权重系数修正模型训练的倾向性,利用调制因子重点关注误分类样本,提高模型训练效率和评估性能。通过新英格兰10机39节点系统进行仿真分析,所提模型能够有效减小不同程度的噪声干扰,在不平衡数据集上修正模型训练偏向性,以减少误分类样本,在不同PMU配置方案下,均取得较好评估效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢锦玲
郭鲁豫
关键词 电力系统暂态稳定评估深度学习深度残差收缩网络焦点损失函数    
Abstract:In power system transient stability assessment, the measurement data of power system synchronous phasor measurement unit (PMU) may exist noise problems during acquisition and transmission process, and the transient stability and instability samples are imbalanced, resulting in the tendency of data-driven transient stability assessment model training and serious misjudgment problems. This paper proposes a power system transient stability assessment method based on improved deep residual shrinkage networks (IDRSN). First, the bottom-level measured electrical quantity is constructed as a feature map as the input of model, and the deep structure of model is used to establish the mapping relationship between the input and the stable result. Faced with noise problems, the model uses the attention mechanism to automatically learn the noise threshold through a soft threshold function to reduce noise and irrelevant feature interference; and through focus loss function (FL), the weight coefficient is introduced to correct the tendency of model training. Modulation factors is used to focus on misclassified samples to improve model training efficiency and evaluation performance. Through the simulation verification of the New England 10-machine 39-node system, the proposed model can effectively reduce the noise interference of different degrees, correct the bias of the model training on the imbalanced data set, and reduce the misclassified samples. Under different PMU configuration schemes, all are obtained better evaluation effect.
Key wordsPower system    transient stability assessment    deep learning    deep residual shrinkage network    focal loss   
收稿日期: 2020-05-05     
PACS: TM712  
通讯作者: 郭鲁豫,女,1996年生,硕士研究生,研究方向为电力系统运行、分析。E-mail:guoluyu111@126. com   
作者简介: 卢锦玲,女,1971年生,博士,副教授,研究方向为电力系统运行、分析与控制等。E-mail:lujinling@126. com
引用本文:   
卢锦玲, 郭鲁豫. 基于改进深度残差收缩网络的电力系统暂态稳定评估[J]. 电工技术学报, 2021, 36(11): 2233-2244. Lu Jinling, Guo Luyu. Power System Transient Stability Assessment Based on Improved Deep Residual Shrinkage Network. Transactions of China Electrotechnical Society, 2021, 36(11): 2233-2244.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.200437          https://dgjsxb.ces-transaction.com/CN/Y2021/V36/I11/2233