Abstract:With the development of integrated energy system, the connection between power grid and natural gas network isgetting closer. In order to ensure the safety and economic operation of the integrated electricity and gas systems, it is necessary to carry outthe joint planning for the system. Therefore, firstly,a multi-objective optimal scheduling modelof the electricity-gas energy interconnection systemis proposed according to the system's large-scale, multi-dimensional, non-convex, and nonlinear characteristics. Secondly, in order to deal with the problem of poor population convergence in the solving algorithm of high-dimensional objective function, anenhanced multi-objective differential evolution algorithm is proposed to strengthen the dominant relation of non-dominant solutions. Finally, IEEE 30-node power system and Belgium 20-node natural gas system are used to show the effectiveness of the proposed algorithm. The simulations show that the present algorithm can produce a better distribution of Pareto optimal front of the objective function under consideration. Meanwhile, a set of better optimization solutionscan be obtained from the high-dimensional target solving, which can meet the operating requirements of the system under different working conditions.
刘明凯, 王占山, 邢彦丽. 基于强化多目标差分进化算法的电-气互联系统最优潮流计算[J]. 电工技术学报, 2021, 36(11): 2220-2232.
Liu mingkai, Wang Zhanshan, Xing Yanli. Enhanced Multi-Objective Differential Evolutionary Algorithm Based Optimal Power Flow Calculation for Integrated Electricity and Gas Systems. Transactions of China Electrotechnical Society, 2021, 36(11): 2220-2232.
[1] BiswasP P, SuganthanP N, MallipeddiR. Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms[J]. Soft Computing,2019,24(4):2999-3023. [2] LiShuijia, Gong Wenyin, Wang Ling, et al. Optimal power flow by means of improved adaptive differential evolution[J]. Energy, 2020,198:117314. [3] 董朝阳,赵俊华,文福拴,等.从智能电网到能源互联网:基本概念与研究框架[J].电力系统自动化,2014, 38(15):1-11. Dong Zhaoyang, Zhao Junhua, Wen Fushuan,et al.From smart grid to energy internet: basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15):1-11. [4] 曾博, 胡强, 刘裕, 等. 考虑需求响应复杂不确定性的电-气互联系统动态概率能流计算[J]. 中国电机工程学报, 2020, 40(4): 1161-1171. Zeng Bo, Hu Qiang, Liu Yu, et al.Dynamic probabilistic energy flow calculation for interconnected electricity-gas system considering complex uncertainties of demand response[J]. Proceeding of the CSEE, 2020, 40(4): 1161-1171. [5] 王震,薛庆.充分发挥天然气在我国现代能源体系构建中的主力作用——对《天然气发展“十三五”规划》的解读[J].天然气工业,2017,37(3):1-8. Wang Zhen, Xue Qing.To fully exert the important role ofnatural gas in building a modern energy security system inChina: an understanding of China’s National 13th Five-YearPlan for natural gas development[J]. Natural Gas Industry, 2017, 37(3): 1-8. [6] 余晓丹,徐宪东,陈硕翼, 等.综合能源系统与能源互联网简述[J].电工技术学报,2016,31(1):1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al.A briefreview to integrated energy system and energy internet[J].Transactions of China Electrotechnical Society,2016,31(1):1-13. [7] 廖小兵,刘开培,张亚超,等.基于区间泰勒展开的不确定性潮流分析[J].电工技术学报,2018,33(4):750-758. LiaoXiaobing, LiuKaipei, Zhang Yachao, et al.Uncertain power flow analysis based on interval taylor expansion[J].Transactions of China Electrotechnical Society,2018,33(4):750-758. [8] 王英瑞,曾博,郭经, 等.电-热-气综合能源系统多能流计算方法[J].电网技术,2016,40(10):2942-2950. Wang YingRui, Zeng Bo, Guo Jing, et al. Multi-energy flow calculation method for integrated energy system containing electricity, heat and gas[J]. Power System Technology, 2016,40(10):2942-2950. [9] Shabanpour-Haghighi A, Seifi A R.An integrated steady-state operation assessment of electricalnatural gas,and district heating networks[J].IEEE Transactions on Power Systems, 2016, 31(5): 3636-3647. [10] 张刚,张峰,张利, 等.考虑多种耦合单元的电气热联合系统潮流分布式计算方法[J].中国电机工程学报,2018,38(22):6594-6604. Zhang Gang, Zhang Feng, Zhang Li, et al.Distributed algorithm for the power flow calculation of integrated electrical, gas, and heating network considering various coupling units[J]. Proceedings of the CSEE, 2018,38(22):6594-6604. [11] 韩佶,苗世洪,李超,等.计及相关性的电-气-热综合能源系统概率最优能量流[J].电工技术学报,2019,34(5):1055-1067. HanJi,MiaoShihong,LiChao,et al. Probabilistic optimal energy flow electricity-gas-heat integrated energy system considering correlation[J].Transactions of China Electrotechnical Society, 2019,34(5):1055-1067. [12] 卫志农,张思德,孙国强, 等.基于碳交易机制的电-气互联综合能源系统低碳经济运行[J].电力系统自动化,2016,40(15):9-16. Wei Zhinong, Zhang Side, Sun Guoqiang, et al, Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J]. Automation of Electric Power Systems,2016,40(15):9-16. [13] 胡健,秦玉杰,焦提操,等.泛在电力物联网环境下考虑碳排放权约束的VPP理性调峰模型[J].电力系统保护与控制,2020,48(3):49-57. HuJian, QinYujie, JiaoTicao, et al. Rational peak shaving model of VPP considering carbon emission rights constraints in ubiquitous power internet of things environment[J]. Power System Protection and Control,2020,48(3):49-57. [14] 王泽森,唐艳梅,乔宝榆, 等.气-电综合能源系统最优潮流及其环境增效研究[J].中国电机工程报,2018,38(增刊1):111-120. Wang Zesen, Tang Yanmei, Qiao Baoyu, et al, Research on integrated natural gas and electricpower system optimal power flow and itsenvironmental synergy[J]. Proceedings of the CSEE, 2018,38(S1):111-120. [15] 陈聪,沈欣炜,夏天, 等.计及?效率的综合能源系统多目标优化调度方法[J].电力系统自动化,2019,43(12):60-67,121. Chen Cong, Shen Xinwei, Xia Tian, et al, Multi-objective optimal dispatch method for integrated energy system considering exergy efficiency[J]. Automation of Electric Power Systems, 2019,43(12):60-67, 121. [16] Panda A, TripathyM, BarisalAK, et al. A modified bacteria foraging based optimal power flow framework for hydro-thermal-wind generation system in the presence of STATCOM[J]. Energy, 2017,124: 720-740. [17] 方红伟,宋如楠,冯郁竹,等.基于差分进化的波浪能转换装置阵列优化[J].电工技术学报,2019,34(12):2597-2605. FangHongwei, SongRunan, Feng Yuzhu, et al. Array optimization of wave energy converters by differential evolution algorithm[J]. Transactions of China Electrotechnical Society,2019,34(12):2597-2605. [18] 刘巍,李锰,李秋燕,等.基于改进遗传算法的电网投资组合预测方法[J].电力系统保护与控制,2020,48(8): 78-85. LiuWei, LiMeng, LiQiuyan, et al. Power grid portfolio forcasting method based on an improved genetic algorithm[J]. Power System Protection and Control,2020,48(8): 78-85. [19] 白顺明, 陈磊, 姜飞, 等. 考虑风电最大化消纳的电力系统多目标优化[J]. 电气技术, 2020, 21(1): 7-11. Bai Shunming, Chen Lei, Jiang Fei, etal. Multi-objective optimal model for power system considering wind power maximum accommodation[J]. Electrical Engineering, 2020, 21(1): 7-11. [20] 王子琪,陈金富,张国芳, 等.基于飞蛾扑火优化算法的电力系统最优潮流计算[J].电网技术,2017,41(11):3641-3647. Wang Ziqi, Chen Jinfu, Zhang Guofang, et al, Optimal power flow calculation with moth-flame optimization algorithm[J]. Power System Technology,2017,41(11):3641-3647. [21] Trivedi I N, Jangir P, Parmar S A, et al.Optimal power flow with voltage stability improvement and loss reduction in power system using moth-flame optimizer[J]. Neural Computing and Applications, 2018,30(6):1889-1904. [22] 商立群,朱伟伟.基于全局学习自适应细菌觅食算法的光伏系统全局最大功率点跟踪方法[J].电工技术学报,2019,34(12):2606-2614. ShangLiqun, ZhuWeiwei. Photovoltaic system global maximum power point tracking method based on the global learning adaptive bacteria foraging algorithm[J].Transactions of China Electrotechnical Society,2019,34(12):2606-2614. [23] Yuan Xiaohui, Zhang Binqiao, Wang Pengtao, et al.Multi-objective optimal power flow based on improved strength pareto evolutionary algorithm[J]. Energy, 2017, 122:70-82. [24] HuYuan, Bie Zhaohong,Ding Tao, et al. An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning[J]. Applied Energy,2015, 167:280-293. [25] 张涛,王成,王凌云,等.偏差电量考核机制下含DG的售电公司多目标优化调度模型[J].电工技术学报,2019,34(15):3265-3274. ZhangTao, WangChen, Wang Lingyun, et al. Multi-objective optimal dispatching model of electricity retailers with distributed generator under energy deviation penalty[J].Transactions of China Electrotechnical Society,2019,34(15):3265-3274. [26] 巩敦卫,刘益萍,孙晓燕, 等.基于目标分解的高维多目标并行进化优化方法[J].自动化学报,2015,41(8):1438-1451. GongDunwei, LiuYiping, Sun Xiaoyan, et al. Parallel many-objective evolutionary optimization using objectives decomposition[J]. Acta AutomaticaSinica,2015, 41(8):1438-1451. [27] 王锡凡. 现代电力系统分析[M].北京: 科学出版社, 2009. [28] 高乐, 赵连琢, 蒋万荣, 等. 天然气输气压力对管道的影响分析[J]. 中国石油和化工标准与质量, 2013(15):261. Gao Le, Zhao Lianzhuo, Jiang Wanrong, et al.Analysis of the influence of gas pressure on pipeline[J].China Petroleum and Chemical Standard and Quality, 2013(15):261. [29] 廖宪国. 天然气输气压力对管道的影响研究[J]. 中国石油和化工标准与质量, 2014 (6):78. Liao Xianguo.Study on the Influence of gas pressure on pipeline[J]. China Petroleum and Chemical Standard and Quality, 2014(6): 78. [30] 陈振兴, 严宣辉, 吴坤安, 等. 融合张角拥挤控制策略的高维多目标优化[J]. 自动化学报, 2015, 41(6):1145-1158. Chen Zhenxing, Yan Xuanhui, Wu Kun’an, et al, Many-objective optimization integrating open anglebased congestion control strategy[J]. Acta Automatica Sinica, 2015,41(6):1145-1158. [31] Lee K Y, Park Y M, Ortiz J L. A united approach to optimal real and reactive power dispatch[J]. Power Engineering Review, IEEE,1985,PAS-104(5):1147-1153. [32] Niknam T, Mojarrad H D, Nayeripour M.A newfuzzy adaptive particle swarm optimization for non-smooth economic dispatch[J]. Energy, 2010,35(4):1764-1778. [33] Niknam T, Narimani M R, Jabbari M, et al.A modified shuffle frog leaping algorithm for multi-objective optimal power flow[J]. Energy, 2011, 36(11):6420-6432.