Coordinated Control Research of ±1 100kV Ultra High Voltage Multi-Terminal Direct Current System
Du Xu, Han Minxiao, Tian Chunzheng, Si Ruihua, Zhang Xin
1. School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China; 2. Economic Research Institute State Grid Henan Electric Power Company Zhengzhou 450000 China; 3. China Electric Power Research Institute Beijing 100192 China
Abstract:Multi-terminal direct current system (MTDC) connects a plurality of converter station. Coordinated control is necessary between converter stations. Combining ±1 100kV UHVDC transmission project,a HVDC transmission system including one single sending-end and two receiving-ends in-feed is researched. In the case of constant firing angle of the sending-end, factors influencing the extinction angle are analyzed. In ensuring adequate extinction angle case,propose a master-slave control strategy based on current margin, achieving coordination between each converter station. A corresponding double- terminals infeed MTDC model is built and simulated in PSCAD/EMTDC. Simulation results show the effectiveness of the proposed control method.
杜旭, 韩民晓, 田春筝, 司瑞华, 张鑫. ±1 100kV特高压多端馈入直流系统协调控制[J]. 电工技术学报, 2016, 31(增刊): 176-183.
Du Xu1, Han Minxiao1, Tian Chunzheng2, Si Ruihua2, Zhang Xin3. Coordinated Control Research of ±1 100kV Ultra High Voltage Multi-Terminal Direct Current System. Transactions of China Electrotechnical Society, 2016, 31(增刊): 176-183.
[1] 张文亮, 周孝信, 郭剑波, 等. ±1 000kV特高压直流在我国电网应用的可行性研究[J]. 中国电机工程学报, 2007, 27(28): 1-5. Zhang Wenliang, Zhou Xiaoxin, Guo Jianbo, et al. Feasibility of ±1000kV ultra HVDC in the power grid of China[J]. Proceedings of the CSEE, 2007, 27(28): 1-5. [2] 刘泽洪, 高理迎, 余军, 等. ±1 000kV 特高压直流输电技术研发思路[J]. 中国电机工程学报, 2009, 29(22): 76-82. Liu Zehong, Gao Liying, Yu Jun, et al. R&D ideas of ±1000kV UHVDC transmission technology[J]. Procee- dings of the CSEE, 2009, 29(22): 76-82. [3] 汤广福, 刘泽洪. 2010 年国际大电网会议系列报道: 高压直流输电和电力电子技术[J]. 电力系统自动化, 2011, 35(5): 1-4. Tang Guangfu, Liu Zehong. A review of CIGRE 2010 on HVDC transmission and power electronic technology [J]. Automation of Electric Power Systems, 2011, 35(5): 1-4. [4] 邓旭, 王东举, 沈扬, 等. ±1 100kV准东-四川特高压直流输电工程主回路参数设计[J]. 电力自动化设备, 2014, 34(4): 133-140. Deng Xu, Wang Dongju, Shen Yang, et al. Main circuit parameter design of Huaidong-Sichuan ±1100kV UHVDC power transmission project[J]. Electric Power Automation Equipment, 2014, 34(4): 133-140. [5] 汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10): 8-17. Tang Guangfu, Luo Xiang, Wei Xiaoguang. Multi- terminal HVDC and DC-grid technology[J]. Procee- dings of the CSEE, 2013, 33(10): 8-17. [6] 徐殿国, 刘瑜超, 武健. 多端直流输电系统控制研究综述[J]. 电工技术学报, 2015, 30(17): 1-12. Xu Dianguo, Liu Yuchao, Wu Jian. Review on control strategies of multi-terminal direct current transmission system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 1-12. [7] 罗永捷, 李耀华, 王平, 等. 多端柔性直流输电系统下垂控制 P - V 特性曲线时域分析[J]. 电工技术学报, 2014, 29(增1): 408-415. Luo Yongjie, Li Yaohua, Wang Ping, et al. Time- domain analysis of P - V characteristic for droop control strategy of VSC-MTDC transmission system[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 408-415. [8] 李响, 韩民晓. 海上风电串联多端 VSC-HVDC协调控制策略[J]. 电工技术学报, 2013, 28(5): 42-48. Li Xiang, Han Minxiao. A coordinated control strategy of series multi-terminal VSC-HVDC for offshore wind farm[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 42-48. [9] 王毅, 付媛, 苏小晴, 等. 基于 VSC-HVDC 联网的风电场故障穿越控制策略研究[J]. 电工技术学报, 2013, 28(12): 150-159. Wang Yi, Fu Yuan, Su Xiaoqing, et al. Fault ride- through control strategy of wind farm integrated with VSC-HVDC[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 150-159. [10] 韩民晓, 文俊, 徐永海. 高压直流输电原理与运行[M]. 北京: 机械工业出版社, 2008. [11] 徐政. 联于弱交流系统的直流输电特性研究之一: 直流输电的输送能力[J]. 电网技术, 1997, 21(1): 12-16. Xu Zheng. Characteristics of HVDC connected to weak AC systems part I: HVDC transmission capability [J]. Power System Technology, 1997, 21(1): 12-16. [12] 王海龙. 多端直流输电系统仿真研究[D]. 北京: 华北电力大学, 2013. [13] 高媛, 韩民晓. 特高压直流输电多端馈入方式稳态特性研究[J]. 电网技术, 2014, 38(12): 3447-3452. Gao Yuan, Han Minxiao. Steady state characteristic of multi infeed UHVDC power transmission[J]. Power System Technology, 2014, 38(12): 3447-3452. [14] Nguyen T T, Son H I, Kim H M. Estimating stability of MTDC systems with different control strategy[J]. Journal of Electrical Engineering & Technology, 2015, 10(2): 443-451. [15] 詹鹏. 大型海上风电场的混合多端直流并网技术研究[D]. 武汉: 华中科技大学, 2013. [16] 袁旭峰, 文劲宇, 程时杰. 多端直流输电系统中的直流功率调制技术[J]. 电网技术, 2007, 31(14): 57-61. Yuan Xufeng, Wen Jinyu, Cheng Shijie. DC power modulation in multi-terminal HVDC transmission system[J]. Power System Technology, 2007, 31(14): 57-61. [17] Serge L, William K, Wong J R, et al. Experience with modeling MTDC systems in transient stability programs [J]. IEEE Transactions on Power Delivery, 1991, 6(1): 405-413. [18] Hammad A, Minghetti R, Hasler J, et al. Controls modelling and verification for the Pacific Intertie HVDC 4-terminal scheme[J]. IEEE Transactions on Power Delivery, 1993, 8(1): 367-375. [19] Santos M A, de Oliveira J C, de Moraes A J, et al. Methodology for control and analysis of a series multi-terminal DC system[C]//International Conference on Proceedings of Power Electronic Drives and Energy Systems for Industrial Growth, Perth, 1999: 855-860. [20] Hammad A, Minghetti R, Hasler J, et al. Modelling of the Pacific Intertie 4-terminal HVDC scheme in EMTP[C]//International Conference on AC and DC Power Transmission, London, 1991: 362-367. [21] 文劲宇, 陈霞, 姚美齐, 等. 适用于海上风场并网的混合多端直流输电技术研究[J]. 电力系统保护与控制, 2013, 41(2): 55-61. Wen Jinyu, Chen Xia, Yao Meiqi, et al. Offshore wind power integration using hybrid multi-terminal HVDC technology[J]. Power System Protection and Control, 2013, 41(2): 55-61. [22] 雷宵, 王华伟, 曾南超, 等. 并联型多端高压直流输电系统的控制与保护策略及仿真[J]. 电网技术, 2012, 36(2): 244-249. Lei Xiao, Wang Huawei, Zeng Nanchao, et al. Control and protection strategies for parallel multi-terminal HVDC power transmission system and their simulation [J]. Power System Technology, 2012, 36(2): 244-249.