Study on Partial Discharge of Metal Particles in XLPE Cable Terminal Excited by X-Ray
Zheng Shusheng1, Kong Ju1, Dai Minting1, Liu Zhichao1, Zhang Zongheng2, Wu Shiyou3
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China;
2. Chengde Power Supply Company State Grid Jibei Electric Power Co. Ltd Chengde 067000 China;
3. Nanchang Power Supply Branch of State Grid Jiangxi Electric Power Corporation Nanchang 330069 China
The discharge signal of small metal particle defect in cable terminal is weak, and the sensitivity of traditional partial discharge detection method is constrained. Recently, The method of using X-ray to excite the internal air gap of solid insulation to produce partial discharge has been applied in engineering. Different from the single air gap defect, the cable metal particle defect has both metal and air gap coexisting. It will aggravate the electric field distortion at the defect. On the other hand, the metal can supply initial electrons via field emission, surface photoelectric emission. The impact of X-ray on the partial discharge of such defect is unclear. To address these issues, this paper proposes a method of using X-ray to excite the partial discharge of metal particle defect in cable terminal, and the feasibility of the method is verified by experiments.
Firstly, partial discharge measurement experiments under X-ray irradiation were conducted on metal particle defects with different electric field distributions and different sizes on the cable terminal simulation model. The effects of X-ray on the partial discharge inception voltage, discharge repetition rate and apparent discharge amount of defect were analyzed. Secondly, the X-ray tube voltage was varied to investigate changes in the discharge characteristics of the defect under different intensities of X-ray irradiation. Thirdly, the influence mechanism of X-ray on the partial discharge of metal particle defect was analyzed in terms of discharge inception field strength and initial electrons. Finally, the feasibility of the proposed method was tested on a 10 kV cable terminal.
The test results show that X-ray irradiation can reduce the partial discharge inception voltage for metal particle defect with different electric field distributions and different sizes, with the reduction range from 11.4% to 29.3%. Compared with no X-ray, X-ray irradiation can increase the discharge repetition rate of metal particle defect, with an increase of 36.1%~726.2%. X-ray has no significant effect on the apparent discharge magnitude of metal particle defect. The excitation impact on the number of defect partial discharge becomes increasingly evident with increasing X-ray intensity. The calculation results of photoelectron yield of different media under X-ray irradiation show that the interaction between X-ray and gas molecules is the main source of initial electrons, and X-ray can stimulate the defect to generate discharge under the condition of satisfying the field strength of discharge onset. For the 10 kV cable terminal defect model, X-ray can reduce its partial discharge incpetion voltage and increase the discharge repetition rate.
The following conclusions can be drawn from the experiment results: (1) X-ray have an excitation effect on the partial discharge of metal particle defect at the cable terminal. It can be used to improve the detection efficiency of partial discharge of metal particle defect in cable. (2) The presence of a tiny air gap in the defect of metal particles is responsible for the X-ray's excitation impact on discharge. (3) X-ray intensity has a significant effect on the effectiveness of defect partial discharge excitation.
郑书生, 孔举, 戴敏婷, 刘志超, 张宗衡, 吴诗优. X射线激励XLPE电缆终端金属颗粒局部放电的研究[J]. 电工技术学报, 0, (): 2492913-2492913.
Zheng Shusheng, Kong Ju, Dai Minting, Liu Zhichao, Zhang Zongheng, Wu Shiyou. Study on Partial Discharge of Metal Particles in XLPE Cable Terminal Excited by X-Ray. Transactions of China Electrotechnical Society, 0, (): 2492913-2492913.
[1] 赵岩, 郑书生. 基于损耗电流谐波特征分析的XLPE电缆局部尖刺缺陷诊断[J]. 电工技术学报, 2023, 38(21): 5725-5737.
Zhao Yan, Zheng Shusheng.Diagnosis of XLPE cable local tip defects based on analysis of harmonic characteristics of loss current[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5725-5737.
[2] 李忠磊, 赵宇彤, 韩涛, 等. 高压电缆半导电屏蔽材料研究进展与展望[J]. 电工技术学报, 2022, 37(9): 2341-2354.
Li Zhonglei, Zhao Yutong, Han Tao, et al.Research progress and prospect of semi-conductive shielding composites for high-voltage cables[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2341-2354.
[3] 常文治, 阎春雨, 李成榕, 等. 硅橡胶/胶联聚乙烯界面金属颗粒沿面放电严重程度的评估[J]. 电工技术学报, 2015, 30(24): 245-254, 261.
Chang Wenzhi, Yan Chunyu, Li Chengrong, et al.Assessment of creeping discharge initiated by metal particles on the silicone rubber/XLPE interface in cable joints[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 245-254, 261.
[4] 李国倡, 梁箫剑, 魏艳慧, 等. 配电电缆附件复合绝缘界面缺陷类型和位置对电场分布的影响研究[J]. 电工技术学报, 2022, 37(11): 2707-2715.
Li Guochang, Liang Xiaojian, Wei Yanhui, et al.Influence of composite insulation interface defect types and position on electric field distribution of distribution cable accessories[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2707-2715.
[5] 聂永杰, 赵现平, 李盛涛. XLPE电缆状态监测与绝缘诊断研究进展[J]. 高电压技术, 2020, 46(4): 1361-1371.
Nie Yongjie, Zhao Xianping, Li Shengtao.Research progress in condition monitoring and insulation diagnosis of XLPE cable[J]. High Voltage Engineering, 2020, 46(4): 1361-1371.
[6] 王昊月, 李成榕, 王伟, 等. 高压频域介电谱诊断XLPE电缆局部绝缘老化缺陷的研究[J]. 电工技术学报, 2022, 37(6): 1542-1553.
Wang Haoyue, Li Chengrong, Wang Wei, et al.Local aging diagnosis of XLPE cables using high voltage frequency domain dielectric spectroscopy[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1542-1553.
[7] 张长安, 范斌涛, 黄寅, 等. 10kV电力电缆本体局放信号传播特性的实验研究与仿真分析[J]. 高压电器, 2023, 59(1): 95-101.
Zhang Chang’an, Fan Bintao, Huang Yin, et al.Experimental research and simulation analysis on partial discharge signal propagation characteristics in 10 kV power cables[J]. High Voltage Apparatus, 2023, 59(1): 95-101.
[8] 李秀婧, 徐友, 李建发. 10kV交联聚乙烯电缆接头微小缺陷时电气性能分析[J]. 电工技术, 2022(11): 128-130.
Li Xiujing, Xu You, Li Jianfa.Electrical performance analysis of 10 kV XLPE cable joint with small defects[J]. Electric Engineering, 2022(11): 128-130.
[9] 张强, 李成榕. X射线激励下局部放电的研究进展[J]. 电工技术学报, 2017, 32(8): 22-32.
Zhang Qiang, Li Chengrong.Review on X-ray induced partial discharge[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 22-32.
[10] Rizzetto S, Stone G C, Boggs S A.The influence of x-rays on partial discharges in voids[C]//Conference on Electrical Insulation & Dielectric Phenomena-Annual Report 1987, Gaithersburg, MD, USA, 1987: 89-94.
[11] Hayashi M, Takada H, Kozako M, et al.Study on time lag of void discharge in epoxy resin by considering attenuation of X-ray irradiation dose[C]//Proceedings of 2011 International Symposium on Electrical Insulating Materials, Kyoto, Japan, 2011: 405-408.
[12] Adili S, Franck C.Application of pulsed X-ray induced partial discharge measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(5): 1833-1839.
[13] Adili S.Pulsed X-ray induced partial discharge measurements[D]. Zurich: ETH Zurich, 2013.
[14] 秦艳军. 交联聚乙烯/硅橡胶复合绝缘界面直流击穿特性及其影响因素[D]. 哈尔滨: 哈尔滨理工大学, 2016.
Qin Yanjun.DC breakdown characteristics at XLPE/SR interface and effect factors[D]. Harbin: Harbin University of Science and Technology, 2016.
[15] 杨津基. 气体放电[M]. 北京: 科学出版社, 1983.
[16] 王子康, 周凯, 朱光亚, 等. 硅脂溶胀对XLPE-SiR复合界面气隙缺陷局部放电的影响及作用机理[J]. 高电压技术, 2021, 47(12): 4245-4254.
Wang Zikang, Zhou Kai, Zhu Guangya, et al.Effect and mechanism of silicone grease swelling on partial discharge at air-gap defects of XLPE-SiR interface[J]. High Voltage Engineering, 2021, 47(12): 4245-4254.
[17] 王霞, 余栋, 段胜杰, 等. 高压电缆附件设计环节中几个关键问题探讨[J]. 高电压技术, 2018, 44(8): 2710-2716.
Wang Xia, Yu Dong, Duan Shengjie, et al.Dealing with some key design problems in HV cable accessory[J]. High Voltage Engineering, 2018, 44(8): 2710-2716.
[18] 黄韬, 郝艳捧, 肖佳朋, 等. 10kV XLPE电缆终端典型安装缺陷的工频局部放电特征对比研究[J]. 电网技术, 2022, 46(6): 2420-2428.
Huang Tao, Hao Yanpeng, Xiao Jiapeng, et al.Comparative study on partial discharge characteristics of typical installation defects in 10 kV XLPE cable terminals under power frequency[J]. Power System Technology, 2022, 46(6): 2420-2428.
[19] 陈向荣, 洪泽林, 朱光宇, 等. 高温下电压稳定剂对交联聚乙烯电树枝化及局部放电特性的影响[J]. 电工技术学报, 2023, 38(3): 577-586.
Chen Xiangrong, Hong Zelin, Zhu Guangyu, et al.Effect of voltage stabilizer on electrical treeing and partial discharge characteristics of crosslinked polyethylene at high temperature[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 577-586.
[20] 余长江. 射线探伤装置[M]. 北京: 机械工业出版社, 1994.
[21] 闫瑞舰. 高压电缆X射线激励局部放电带电检测的诊断与定位[D]. 北京: 华北电力大学, 2022.
Yan Ruijian.Diagnosis and location of X-ray excited partial discharge live dctection of high voltage cable[D]. Beijing: North China Electric Power University, 2022.
[22] 罗家治, 徐建一, 沈建, 等. 常用辐射量与单位[J]. 实用测试技术, 2001, 27(1): 42-45, 33.
[23] Salama M M A, Parekh H, Srivastava K D. A comment on the methods of calculation of corona onset voltage[J]. Applied Physics Letters, 2008, 30(3): 139.
[24] Parekh H, Salama M M A, Srivastava K D. Calculation of corona onset and breakdown voltage in short point-to-plane air gaps[J]. Journal of Applied Physics, 1978, 49(1): 107-112.
[25] Chen Yong, Zheng Yuesheng, Miao Xiren.Breakdown conditions of short air-insulated gaps under alternating non-uniform electric fields[J]. Journal of Applied Physics, 2017, 122(3): 033304.
[26] Mesyats G A.Explosive Electrons Emission[M]. Ekaterinburg: URO Press, 1998.
[27] 刘昶时. X射线及低能γ光子在金属箔透射面的光致电子发射产额[J]. 核技术, 1998, 21(7): 436-439.
Liu Changshi.Absolute emission yields of photon-induced electrons from foils on transmissive surface[J]. Nuclear Techniques, 1998, 21(7): 436-439.
[28] Mori C, Watanabe T.Photoelectric emission of metals by X-rays in the KeV region[J]. Japanese Journal of Applied Physics, 1970, 9(6): 666-672.
[29] Levatter J I, Li Z.Low energy X-ray preionization source for discharge excited lasers[J]. Review of Scientific Instruments, 1981, 52(11): 1651-1654.
[30] 卢中西. X射线对聚乙烯材料电气性能的影响[D]. 北京: 华北电力大学, 2016.
Lu Zhongxi.Influence of X-ray on electrical properties of polyethylene material[D]. Beijing: North China Electric Power University, 2016.
[31] 张宗衡. X射线对XLPE电缆附件局部放电的激励影响[D]. 北京: 华北电力大学, 2023.
Zhang Zongheng.Effect of X-ray on partial discharge of XLPE cable accessories[D]. Beijing: North China Electric Power University, 2023.