Abstract:Electromagnetic launch (EML) technology is an energy conversion technology that directly converts electromagnetic energy into instantaneous kinetic energy to launch a payload. It breaks through traditional launch methods'energy and speed limits, an inevitable way for future launch methods. A linear motor for EML is powered by a pulse power supply that launches over 100 m/s, which is the core actuator and provides a driving magnetic field and accelerating path. The linear motor is a new research direction derived from high-power linear motors with common problems such as higher thrust density, magnetic field saturation effect, and multi-level energy conversion. It also has the characteristics of traditional linear motors, such as end effect, edge effect, and phase impedance imbalance. Special issues of long primary segmented power supply, multi-stator coupling modeling, assignment alternating strategy, fault diagnosis, and disturbance-free operation need to be solved. In the last ten years, the linear motor and its control technology have become a hot research direction. The linear motor for EML comprises the multi-stator, multi-phase, and long primary structure, facing the magnetic field saturation and magnetic flux leakage problems .It has a short-time pulse current working mode, requiring extremely high reliability, redundancy, maintainability, and long life. Like traditional linear motor technology, linear motor technology for EML also includes three aspects: motor body, motor control, and motor maintenance. However, the linear motor for EML faces special technical issues for working in special and extreme conditions. This paper introduces three key technologies: high-power linear motor design, long primary stator segmented power supply, and continuous emission thermal management. The research status of the three typical linear motors is reviewed: electromagnetic catapult motor, electromagnetic rail launch motor, and electromagnetic coil launch motor. This paper also summarizes the research status of linear motor control for EML, focusing on segmented power supply, thrust fluctuation suppression, fault diagnosis, and redundancy control. Segmented long primary causes the motor inductance imbalance, resulting in thrust fluctuation and degrading system performance. The solving methods are divided into two categories: modifying the end winding type to eliminate the pulsating magnetic field and controlling current to counter the thrust fluctuation caused by asymmetry. The sources of thrust fluctuations are structural factors, control factors, and other factors. Structural factors, such as cogging torque, end effect, magnetic field space harmonics, and phase imbalance, are optimized or compensated by changing motor topology. Meanwhile, control factors, such as segmented control, time-delay disturbance, parameter variation, and current ripple, can only be suppressed through control strategies, feed-forward control, and other measures. The structure of N primaries (N≥2) sharing just one secondary can be adopted to further enhance the thrust density and reliability of a double-sided linear induction motor. If one primary fails, the residual N-1 primaries can accomplish the scheduled target, exhibiting solid redundancy. Linear motors for EML work in extreme conditions and have basic characteristics, including strong coupling, high transient, high stress, high-speed motion, and pulse operation. Limited by the weight, volume, material property, and manufacturing technology of the EML device, technical bottleneck solutions mainly rely on engineering technology methods. With the rapid development of high-speed maglev and EML technology, linear motors for EML will become a particular research category, and the related technologies will receive continuous breakthroughs and improvements. Furthermore, this paper proposes the development trend, such as hybrid excitation and superconducting coil technology, mover lightweight technology, vacuum launch tube and suspension technology, high-performance material application, and position sensorless control, providing a reference for subsequent research.
鲁军勇, 柳应全. 电磁发射用直线电机及其控制技术综述[J]. 电工技术学报, 2024, 39(19): 5899-5913.
Lu Junyong, Liu Yingquan. Review on Linear Motor for Electromagnetic Launch and Its Control Technology. Transactions of China Electrotechnical Society, 2024, 39(19): 5899-5913.
[1] 马伟明, 鲁军勇. 电磁发射技术的研究现状与挑战[J]. 电工技术学报, 2023, 38(15): 3943-3959. Ma Weiming, Lu Junyong.Research progress and challenges of electromagnetic launch technology[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3943-3959. [2] 马伟明, 鲁军勇. 电磁发射技术[J]. 国防科技大学学报, 2016, 38(6): 1-5. Ma Weiming, Lu Junyong.Electromagnetic launch technology[J]. Journal of National University of Defense Technology, 2016, 38(6): 1-5. [3] Ma Weiming, Lu Junyong, Liu Yingquan.Research progress of electromagnetic launch technology[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2197-2205. [4] 叶云岳. 直线电机原理与应用[M]. 北京: 机械工业出版社, 2000. [5] 卢琴芬, 沈燚明, 叶云岳. 永磁直线电动机结构及研究发展综述[J]. 中国电机工程学报, 2019, 39(9): 2575-2588. Lu Qinfen, Shen Yiming, Ye Yunyue.Development of permanent magnet linear synchronous motors structure and research[J]. Proceedings of the CSEE, 2019, 39(9): 2575-2588. [6] Laithwaite E R.Induction machines for special purposes[M]. London: Newnes, 1966. [7] Laithwaite E R.Transport without wheels[M]. Boulder, Colorado: Westview Press, 1977. [8] Zhang Yuxing, Ma Weiming, Lu Junyong, et al.The transient thermal characteristics of periodic pulse- type linear induction motor[C]//The XIX International Conference on Electrical Machines-ICEM, Rome, Italy, 2010: 1-5. [9] Lu Lu, Ma Weiming, Zhang Yuxing, et al.Cooling method of periodic pulse-type linear induction motor armature[C]//2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, 2014: 2403-2408. [10] 张永胜, 鲁军勇, 谭赛, 等. 电磁轨道连续快速发射下轨道中热量分布特性[J]. 海军工程大学学报, 2016, 28(增刊1): 94-99. Zhang Yongsheng, Lu Junyong, Tan Sai, et al.Research on distribution characteristics of thermal energy in continuous electromagnetic rail launch[J]. Journal of Naval University of Engineering, 2016, 28(S1): 94-99. [11] Kealey E R, Joyce P J, Cerza M, et al.Investigation of elliptical cooling channels for a naval electromagnetic railgun[C]//Proceedings of ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 2008: 89-97. [12] Haller T, Mischler W.A comparison of linear induction and linear synchronous motors for high speed ground transportation[J]. IEEE Transactions on Magnetics, 1978, 14(5): 924-926. [13] Stumberger G, Zarko D, Timur Aydemir M, et al.Design and comparison of linear synchronous motor and linear induction motor for electromagnetic aircraft launch system[C]//IEEE International Electric Machines and Drives Conference, Madison, WI, USA, 2003: 494-500. [14] Mirzaei M, Abdollahi S E.Design optimization of reluctance-synchronous linear machines for electro- magnetic aircraft launch system[J]. IEEE Transa- ctions on Magnetics, 2009, 45(1): 389-395. [15] Mu Shujun, Chai Jianyun, Sun Xudong, et al.A variable pole pitch linear induction motor for electromagnetic aircraft launch system[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1346-1351. [16] 张明元, 马伟明, 汪光森, 等. 飞机电磁弹射系统发展综述[J]. 舰船科学技术, 2013, 35(10): 1-5. Zhang Mingyuan, Ma Weiming, Wang Guangsen, et al.Overview on a significant technology of modern aircraft carrier-electromagnetic aircraft launch system[J]. Ship Science and Technology, 2013, 35(10): 1-5. [17] Patterson D, Monti A, Brice C, et al.Design and simulation of an electromagnetic aircraft launch system[C]//Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 2002, 1951-1957. [18] Sato K, Katori M, Shimokohbe A.Ultrahigh- acceleration moving-permanent-magnet linear syn- chronous motor with a long working range[J]. IEEE/ ASME Transactions on Mechatronics, 2013, 18(1): 307-315. [19] 李艳明, 彭雪明, 梁晓龙, 等. 基于磁通切换永磁直线电机的导弹电磁发射技术[J]. 高电压技术, 2016, 42(9): 2830-2834. Li Yanming, Peng Xueming, Liang Xiaolong, et al.Electromagnetic missile launch technology based on linear flux-switching permanent magnet machine[J]. High Voltage Engineering, 2016, 42(9): 2830-2834. [20] Stumberger G, Aydemir M T, Zarko D, et al.Design of a linear bulk superconductor magnet synchronous motor for electromagnetic aircraft launch systems[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(1): 54-62. [21] 郑陆海. 复合磁悬浮的高温超导直线同步电动机[D]. 成都: 电子科技大学, 2011. Zheng Luhai.High temperature superconducting linear synchronous motor integrated with magnetic suspension system[D]. Chengdu: University of Elec- tronic Science and Technology of China, 2011. [22] 王莹. 电发射技术概论[J]. 电工技术杂志, 2003, 22(10): 94-97, 78. Wang Ying.An introduction to electric launch technology[J]. Electrotechnical Journal, 2003, 22(10): 94-97, 78. [23] Li Jun, Gui Yinchun, Yu Chenda, et al.First experi- mental results of the “Pseudo-liquid armature with air-spring”[C]//2005 IEEE Pulsed Power Conference, Monterey, CA, USA, 2005: 234-236. [24] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4): 1052-1064. Li Jun, Yan Ping, Yuan Weiqun.Electromagnetic Gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064. [25] Lü Qingao, Li Zhiyuan, Lei Bin, et al.Primary structural design and optimal armature simulation for a practical electromagnetic launcher[J]. IEEE Transa- ctions on Plasma Science, 2013, 41(5): 1403-1409. [26] Egeland A.Birkeland’s electromagnetic Gun: a historical review[J]. IEEE Transactions on Plasma Science, 1989, 17(2): 73-82. [27] Widner M M.WARP-10: a numerical simulation model for the cylindrical reconnection launcher[J]. IEEE Transactions on Magnetics, 1991, 27(1): 634-638. [28] Madhavan S, Sijoy C D, Pahari S, et al.Significance of armature resistivity and deformation in modeling coilgun performance[J]. IEEE Transactions on Plasma Science, 2014, 42(2): 323-329. [29] 何勇, 高贵山, 宋盛义, 等. 电磁线圈炮计算程序的收敛性与实验验证[J]. 强激光与粒子束, 2014, 26(10): 265-268. He Yong, Gao Guishan, Song Shengyi, et al.Convergence of electromagnetic coilgun design code and its experimental validation[J]. High Power Laser and Particle Beams, 2014, 26(10): 265-268. [30] Zhang Tao, Guo Wei, Dong Zhiqiang, et al.Experimental results from a 4-stage synchronous induction coilgun[C]//2012 16th International Sympo- sium on Electromagnetic Launch Technology, Beijing, China, 2012: 1-5. [31] Zhang Tao, Guo Wei, Lin Fuchang, et al.Design and testing of 15-stage synchronous induction coilgun[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1089-1093. [32] 王秋良, 王厚生, 李献, 等. 同轴线圈电磁推进技术述评[J]. 高电压技术, 2015, 41(8): 2489-2499. Wang Qiuliang, Wang Housheng, Li Xian, et al.Review of coaxial coil electromagnetic propulsion technology[J]. High Voltage Engineering, 2015, 41(8): 2489-2499. [33] 熊诗成, 鲁军勇, 郑宇锋, 等. 电磁发射用脉冲功率电源放电建模分析[J]. 国防科技大学学报, 2019, 41(4): 53-59. Xiong Shicheng, Lu Junyong, Zheng Yufeng, et al.Modeling and analysis of discharge of pulsed power supply for electromagnetic launch[J]. Journal of National University of Defense Technology, 2019, 41(4): 53-59. [34] 刘旭堃, 于歆杰, 刘秀成. 电容储能型脉冲电源分时分段触发策略自动计算方法[J]. 电工技术学报, 2016, 31(11): 186-193. Liu Xukun, Yu Xinjie, Liu Xiucheng.An automatic calculation method for the triggering strategy of the capacitive pulsed-power supply[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 186-193. [35] 熊诗成. 脉冲功率电源能量传递效率优化研究[J]. 北京理工大学学报, 2020, 40(7): 790-796. Xiong Shicheng.Optimization of energy transfer efficiency for pulsed power supply[J]. Transactions of Beijing Institute of Technology, 2020, 40(7): 790-796. [36] 熊诗成, 鲁军勇, 郑宇锋, 等. 脉冲功率电源放电效果评价体系研究[J]. 海军工程大学学报, 2019, 31(5): 98-104. Xiong Shicheng, Lu Junyong, Zheng Yufeng, et al.Research on discharge performance evaluation system of storage pulse power supply[J]. Journal of Naval University of Engineering, 2019, 31(5): 98-104. [37] Hall D, Kapinski J, Krefta M, et al.Transient electromechanical modeling for short secondary linear induction machines[J]. IEEE Transactions on Energy Conversion, 2008, 23(3): 789-795. [38] Zhu Haibin, Sun Xiao, Shi Liming, et al.A block feeding control strategy of long primary linear indu- ction motor[C]//2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 2016: 1-4. [39] 马逊, 毛凯, 张艳清, 等. 一种直线电机分段供电结构: CN110417327A[P].2019-11-05. [40] 鲁军勇, 马伟明, 孙兆龙, 等. 多段初级直线感应电机静态纵向边端效应研究[J]. 中国电机工程学报, 2009, 29(33): 95-101. Lu Junyong, Ma Weiming, Sun Zhaolong, et al.Research on static longitudinal end effect of linear induction motor with multi-segment primary[J]. Proceedings of the CSEE, 2009, 29(33): 95-101. [41] 许金, 马伟明, 鲁军勇, 等. 分段供电直线感应电机气隙磁场分布和互感不对称分析[J]. 中国电机工程学报, 2011, 31(15): 61-68. Xu Jin, Ma Weiming, Lu Junyong, et al.Analysis of air-gap magnetic field distribution and mutual inductance asymmetry of sectionally powered linear induction motor[J]. Proceedings of the CSEE, 2011, 31(15): 61-68. [42] 牟树君, 柴建云, 孙旭东, 等. 分段供电交流直线电机三相互感不对称分析及抑制[J]. 电工技术学报, 2015, 30(1): 81-88. Mu Shujun, Chai Jianyun, Sun Xudong, et al.Analysis and restrain of mutual inductance asymmetry in the sectionally powered AC linear motor[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 81-88. [43] 牟树君, 柴建云, 孙旭东, 等. 分段供电交流直线电机中偏置磁通密度的分析及其消除方法[J]. 电工技术学报, 2014, 29(3): 12-20. Mu Shujun, Chai Jianyun, Sun Xudong, et al.Analysis and elimination of the off-set flux density in the sectionally powered AC linear motors[J]. Transa- ctions of China Electrotechnical Society, 2014, 29(3): 12-20. [44] Zou Xunhao, Huang Shenghua, Qin Zhuqian, et al.A control method for permanent-magnet synchronous motor with unbalanced cable resistor[C]//2015 6th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, China, 2015: 1-3. [45] Li Liyi, Hong Junjie, Wu Hongxing, et al.Adaptive back-stepping control for the sectioned permanent magnetic linear synchronous motor in vehicle trans- portation system[C]//2008 IEEE Vehicle Power and Propulsion Conference, Harbin, 2008: 1-5. [46] Li Liyi, Hong Junjie, Wu Hongxing, et al.Section crossing drive with fuzzy-PI controller for the long stroke electromagnetic launcher[J]. IEEE Transa- ctions on Magnetics, 2009, 45(1): 363-367. [47] Becherini G, Di Fraia S, Tellini B.Analysis of the dynamic behavior of a linear induction type catapult[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 59-64. [48] 刘爱民, 张锦辉, 高君. 直线电机的推力波动及其抑制方法[J]. 沈阳工业大学学报, 2003, 25(6): 482-485. Liu Aimin, Zhang Jinhui, Gao Jun.Thrust undulation and its restraining method of permanent magnet linear synchronous motor[J]. Journal of Shenyang University of Technology, 2003, 25(6): 482-485. [49] 宗开放, 赵吉文, 宋俊材, 等. 基于V型线圈永磁同步直线电机推力波动抑制[J]. 中国电机工程学报, 2019, 39(22): 6736-6746. Zong Kaifang, Zhao Jiwen, Song Juncai, et al.Thrust ripple reduction based on V-coil permanent magnet synchronous linear motors[J]. Proceedings of the CSEE, 2019, 39(22): 6736-6746. [50] Hu Yashan, Zhu Ziqiang, Liu Kan.Current control for dual three-phase permanent magnet synchronous motors accounting for current unbalance and harmo- nics[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(2): 272-284. [51] Hu Yashan, Zhu Z Q, Odavic M.Comparative study of current control methods of asymmetric PM synchronous machine[C]//2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 2016: 982-988. [52] Zou Xunhao, Huang Shenghua, Qin Zhuqian, et al.A control method for permanent-magnet synchronous motor with unbalanced cable resistor[C]//2015 6th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, China, 2015: 1-3. [53] 聂世雄, 马伟明, 李卫超, 等. 对称电流激励长初级直线感应电机推力波动研究[J]. 中国电机工程学报, 2015, 35(21): 5585-5591. Nie Shixiong, Ma Weiming, Li Weichao, et al.Research on thrust ripple of long primary linear induction motors with symmetrical current excited[J]. Proceedings of the CSEE, 2015, 35(21): 5585-5591. [54] Sun Xiao, Shi Liming, Zhang Zhihua, et al.Thrust control of a double-sided linear induction motor with segmented power supply[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4891-4900. [55] 孙兆龙, 刘德志, 马伟明, 等. 双初级耦合直线感应电动机研究[J]. 中国电机工程学报, 2010, 30(27): 1-6. Sun Zhaolong, Liu Dezhi, Ma Weiming, et al.Double-primary coupling linear induction motors[J]. Proceedings of the CSEE, 2010, 30(27): 1-6. [56] Meeker D C, Newman M J.Indirect vector control of a redundant linear induction motor for aircraft launch[J]. Proceedings of the IEEE, 2009, 97(11): 1768-1776. [57] 马名中, 马伟明, 王公宝, 等. 多定子直线感应电动机任务交班控制策略[J]. 电机与控制学报, 2012, 16(3): 1-7. Ma Mingzhong, Ma Weiming, Wang Gongbao, et al.Assignment alternating strategy of multiple primaries linear induction motor[J]. Electric Machines and Control, 2012, 16(3): 1-7. [58] 马名中, 马伟明, 张育兴, 等. 多定子直线感应电机故障模式下的电流过载特性[J]. 中国电机工程学报, 2013, 33(18): 96-102, 10. Ma Mingzhong, Ma Weiming, Zhang Yuxing, et al.Phase current overload characteristics of multi- primary linear induction motors under failure modes[J]. Proceedings of the CSEE, 2013, 33(18): 96-102, 10. [59] 马名中, 马伟明, 郭灯华, 等. 多定子直线感应电机模型及间接矢量控制算法[J]. 电机与控制学报, 2013, 17(2): 1-6. Ma Mingzhong, Ma Weiming, Guo Denghua, et al.Model and indirect vector control of multi-primary linear induction motor[J]. Electric Machines and Control, 2013, 17(2): 1-6. [60] 崔小鹏, 王公宝, 马伟明, 等. 直线电机分段供电故障诊断研究[J]. 电机与控制学报, 2013, 17(8): 9-14. Cui Xiaopeng, Wang Gongbao, Ma Weiming, et al.Research on fault diagnosis of segment-powered linear induction motor[J]. Electric Machines and Control, 2013, 17(8): 9-14. [61] 徐兴华, 马伟明, 崔小鹏, 等. 分段供电切换传感器的在线故障诊断方法[J]. 国防科技大学学报, 2016, 38(6): 24-36, 53. Xu Xinghua, Ma Weiming, Cui Xiaopeng, et al.Online fault diagnosis method of segment-powered switch control sensor[J]. Journal of National University of Defense Technology, 2016, 38(6): 24-36, 53.