Abstract:In practical permanent magnet synchronous linear motor (PMSLM) servo drive applications, uncertainties arising from time-varying payloads, such as mismatched inertia and nonlinear friction, can significantly degrade the tracking accuracy of the servo system. Traditional robust control techniques can enhance the servo performance of linear motors but often rely on the motor’s precise models and parameters. To diminish reliance on the motor system model, a model-free control approach grounded in the ultra-local model concept has been introduced in recent years. Nevertheless, the uncertainty estimation within the ultra-local model typically involves complex algebraic identification and observer methods, which are intricate and fail to account for the effects of estimation errors. This paper presents a model-free robust position control strategy predicated on nonlinear time delay estimation, streamlining the implementation process and enhancing its universality. Firstly, a dynamic order model for PMSLM is constructed on the foundation of the ultra-local concept. This model eliminates motor parameters and nonlinear terms in dynamic models, furnishing a framework for model-free control. Secondly, the terminal sliding mode attraction factor is introduced to design the expected nonlinear error dynamics, ensuring high-precision finite-time convergence of position tracking errors. Then, the uncertainty caused by payload changes is estimated online using the time-delay disturbance estimation technology, and feedforward is compensated to the control loop. Meanwhile, nonlinear damping terms are integrated to counteract the time-delay disturbance estimation error. Finally, the stability of the closed-loop controller is examined via Lyapunov theory, and guidelines for controller parameter selection are articulated. The simulation and experimental results of the position step response are 0.114 s and 0.202 s with the proposed method, 0.163 s and 0.392 s with the traditional proportional-derivative (PD) control, and 0.132 s and
王立俊, 赵吉文, 于子翔, 盘真保. 基于非线性时间延迟扰动估计的永磁同步直线电机无模型鲁棒位置跟踪控制[J]. 电工技术学报, 2024, 39(18): 5692-5704.
Wang Lijun, Zhao Jiwen, Yu Zixiang, Pan Zhenbao. Model-Free Robust Position Tracking Control of Permanent Magnet Synchronous Linear Motor Based on Nonlinear Time Delay Disturbance Estimation. Transactions of China Electrotechnical Society, 2024, 39(18): 5692-5704.
[1] Boldea I, Tutelea L N, Xu Wei, et al.Linear electric machines, drives, and MAGLEVs: an overview[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7504-7515. [2] 方馨, 王丽梅, 张康. 基于扰动观测器的永磁直线电机高阶非奇异快速终端滑模控制[J]. 电工技术学报, 2023, 38(2): 409-421. Fang Xin, Wang Limei, Zhang Kang.High order nonsingular fast terminal sliding mode control of permanent magnet linear motor based on disturbance observer[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 409-421. [3] Wang Mingyi, Li Liyi, Pan Donghua, et al.High- bandwidth and strong robust current regulation for PMLSM drives considering thrust ripple[J]. IEEE Transactions on Power Electronics, 2016, 31(9): 6646-6657. [4] Thomsen S, Hoffmann N, Fuchs F W.PI control, PI-based state space control, and model-based predictive control for drive systems with elastically coupled loads-a comparative study[J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3647-3657. [5] 孙强, 张为堂. 磁通切换永磁电机模糊自适应PI控制策略[J]. 中国电机工程学报, 2017, 37(22): 6611-6618, 6773. Sun Qiang, Zhang Weitang.An adaptive-fuzzy PI control strategy for flux-switching permanent magnet motors[J]. Proceedings of the CSEE, 2017, 37(22): 6611-6618, 6773. [6] Huang Sudan, Cao Guangzhong, Xu Junqi, et al.Predictive position control of long-stroke planar motors for high-precision positioning applications[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 796-811. [7] Song Fazhi, Liu Yang, Xu Jianxin, et al.Iterative learning identification and compensation of space-periodic disturbance in PMLSM systems with time delay[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7579-7589. [8] 王璨, 李国冲, 杨桂林, 等. 基于生物智能环状耦合的嵌入式永磁同步直线电机高精度位置协同控制研究[J]. 电工技术学报, 2021, 36(5): 935-943. Wang Can, Li Guochong, Yang Guilin, et al.Research on position cooperative control of high-precision embedded permanent magnet synchronous linear motor based on biological intelligence loop coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 935-943. [9] Cupertino F, Naso D, Mininno E, et al.Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors[J]. IEEE Transactions on Industry Applications, 2009, 45(5): 1688-1696. [10] 付东学, 赵希梅. 永磁直线同步电机自适应非奇异快速终端滑模控制[J]. 电工技术学报, 2020, 35(4): 717-723. Fu Dongxue, Zhao Ximei.Adaptive nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 717-723. [11] Wang Lijun, Zhao Jiwen, Yang Xing, et al.Robust deadbeat predictive current regulation for permanent magnet synchronous linear motor drivers with parallel parameter disturbance and load observer[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 7834-7845. [12] Chen S Y, Chiang H H, Liu T S, et al.Precision motion control of permanent magnet linear synchronous motors using adaptive fuzzy fractional- order sliding-mode control[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 741-752. [13] Zeman V, Patel R V, Khorasani K.Control of a flexible-joint robot using neural networks[J]. IEEE Transactions on Control Systems Technology, 1997, 5(4): 453-462. [14] Li Wanrong, Yuan Huawei, Li Sinan, et al.A revisit to model-free control[J]. IEEE Transactions on Power Electronics, 2022, 37(12): 14408-14421. [15] 姚文龙, 裴春博, 池荣虎, 等. 基于无模型自适应控制的船舶微电网二次调频控制策略[J]. 电机与控制学报, 2023, 27(3): 135-146. Yao Wenlong, Pei Chunbo, Chi Ronghu, et al.Secondary frequency modulation control strategy of ship microgrid with model-free adaptive control[J]. Electric Machines and Control, 2023, 27(3): 135-146. [16] 尹政, 胡存刚, 芮涛, 等. LC滤波型电压源逆变器无模型预测电压控制策略[J]. 电工技术学报, 2023, 38(14): 3723-3732. Yin Zheng, Hu Cungang, Rui Tao, et al.Model-free predictive voltage control strategy for LC-filtered voltage source inverter[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3723-3732. [17] Kang Jinsong, Huang Xiayi, Xia Chang, et al.Ultralocal model-free adaptive supertwisting nonsingular terminal sliding mode control for magnetic levitation system[J]. IEEE Transactions on Industrial Electronics, 2024, 71(5): 5187-5194. [18] Fliess M, Join C.Model-free control[J]. International Journal of Control, 2013, 86(12): 2228-2252. [19] Zhang Yongchang, Jin Jialin, Huang Lanlan.Model- free predictive current control of PMSM drives based on extended state observer using ultralocal model[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 993-1003. [20] Zhou Yanan, Li Hongmei, Zhang Hengguo.Model-free deadbeat predictive current control of a surface-mounted permanent magnet synchronous motor drive system[J]. Journal of Power Electronics: A Publications of the Korean Institute of Power Electronics, 2018, 18(1): 103-115. [21] 苏光靖, 李红梅, 李争, 等. 永磁同步直线电机无模型电流控制[J]. 电工技术学报, 2021, 36(15): 3182-3190. Su Guangjing, Li Hongmei, Li Zheng, et al.Research on model-free current control of permanent magnet synchronous linear motor[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3182-3190. [22] Gao Siyu, Wei Yanjun, Zhang Di, et al.Model-free hybrid parallel predictive speed control based on ultralocal model of PMSM for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2022, 69(10): 9739-9748. [23] Franklin G F, Powell J D.Digital control of dynamic systems[M]. New Jersey:Addison-Wesley Publishing Company, 1980. [24] Jin M, Kang S H, Chang P H.Robust compliant motion control of robot with nonlinear friction using time-delay estimation[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1):258-269. [25] Slotine J J E. The robust control of robot manipu- lators[J]. The International Journal of Robotics Research, 1985, 4(2): 49-64. [26] Polyakov A, Poznyak A.Reaching time estimation for “super-twisting” second order sliding mode controller via Lyapunov function designing[J]. IEEE Transactions on Automatic Control, 2009, 54(8): 1951-1955.