Abstract:In indirect vector control, the compensation of slip frequency and stator resistance is very important for high precision control. In the existing researches, the stability of compensation of slip frequency and stator resistance at low speed area is rarely discussed, and the research of coupling relationship between them is not deep enough. In this paper, the coupling relationship between the slip frequency and the stator resistance on the flux linkage is analyzed in depth, and the decoupling conditions of the slip frequency and the stator resistance and the convergence conditions are given. In addition, a new coupling compensation strategy of slip frequency and stator resistance is designed by using the second stability theorem of lyapunov. Based on the 5.5kW motor towing platform, this paper carried out experimental verification on the compensation method proposed in this paper, and proved the consistency of this method and theoretical analysis.
钟志宏, 方晓春, 王晓帆, 杨中平, 林飞. 考虑零速/极低速稳定性的异步电机转差频率与定子电阻耦合补偿策略[J]. 电工技术学报, 2020, 35(zk1): 192-202.
Zhong Zhihong, Fang Xiaochun, Wang Xiaofan, Yang Zhongping, Lin Fei. A Coupling Compensation Strategy for Slip Frequency and Stator Resistance of Induction Motor Considering the Stability near Zero Speed. Transactions of China Electrotechnical Society, 2020, 35(zk1): 192-202.
[1] 黄志武, 阳同光. 直接转矩控制定子电阻影响分析及在线补偿[J]. 计算机仿真, 2008(6): 292-295, 303. Huang Zhiwu, Yang Tongguang.Analysis of stator resistance influence of direct torque control and compensation on-line[J]. Computer Simulation, 2008(6): 292-295, 303. [2] Hamid A Toliyat, Emil Levi, Mona Raina.A review of RFO induction motor parameter estimation techni- ques[J]. IEEE Transactions on Energy Conversion, 2003, 18(2): 271-283. [3] 杨淑英, 孙瑞, 曹朋朋, 等. 一种基于双复合滑模面滑模观测器的异步电机转子电阻辨识方案[J]. 电工技术学报, 2018, 33(15): 3596-3606. Yang Shuying, Sun Rui, Cao Pengpeng, et al.Double compound manifold sliding mode observer based rotor resistance online updating scheme for induction motor[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3596-3606. [4] Fan Bo, Li Xing, Shi Guanghui, et al.Motor rotor resistance identification based on elman neural network[C]//Proceeding of the IEEE International Conference on Automation and Logistics, Zhengzhou, China, 2012: 196-200. [5] 邵佳俊, 黄文新, 杨驹丰, 等. 基于定子电流矫正的异步电机间接定子磁场定向控制[J]. 电工技术学报, 2016, 31(23): 31-37. Shao Jiajun, Huang Wenxin, Yang Jufeng, et al.Indirect stator field-oriented control for induction motor based on the stator current correction[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 31-37. [6] 孙大南, 刘志刚, 刁利军. 牵引电机矢量控制转子磁场准确定向实时校正策略[J]. 电工技术学报, 2011, 26(9): 116-123. Sun Danan, Liu Zhigang, Diao Lijun.Accurate rotor flux orientation real-time correction strategy for vector control of traction motors[J]. Transactions of China Electrotechnical Society, 2011, 26(9): 116-123. [7] 樊扬, 瞿文龙, 陆海峰, 等. 基于转子磁链q轴分量的异步电机间接矢量控制转差频率校正[J]. 中国电机工程学报, 2009, 29(9): 62-66. Fan Yang, Qu Wenlong, Lu Haifeng, et al.Slip frequency correction method base on rotor flux q axis component for induction machine indirect vector control system[J]. Proceedings of the CSEE, 2009, 29(9): 62-66. [8] 陆海峰, 瞿文龙, 张磊, 等. 一种基于无功功率的异步电机矢量控制转子磁场准确定向方法[J]. 中国电机工程学报, 2005, 25(16): 116-120. Lu Haifeng, Qu Wenlong, Zhang Lei, et al.A novel rotor flux oriented scheme of induction motor based on reactive power[J]. Proceedings of the CSEE, 2005, 25(16): 116-120. [9] Yu Xing, Dunnigan M W, Willianms B W.A novel rotor resistance identification method for an indirect rotor flux-oriented controlled induction machine system[J]. IEEE Transactions on Power Electronics, 2002, 17(3): 353-364. [10] Rowan T M, Kerrman R J, Leggate D.A simple on-line adaption for indirect field orientation of an induction machine[J]. IEEE Transactions on Industry Applications, 1991, 27(4): 720-727. [11] 燕俊峰, 王晓琳, 廖启新. 一种利用转矩观测矫正异步电机转子磁场定向的方法[J]. 中国电机工程学报, 2015, 35(17): 4517-4523. Yan Junfeng, Wang Xiaolin, Liao Qixin.A correction method for rotor field orientation of induction machine based on torque observation[J]. Proceedings of the CSEE, 2015, 35(17): 4517-4523. [12] 王高林, 杨荣峰, 张家皖, 等. 一种感应电机转子时间常数MRAS的在线辨识方法[J]. 电工技术学报, 2012, 27(4): 48-53. Wang Gaolin, Yang Rongfeng, Zhang Jiawan, et al.Rotor time constant on-line estimation of induction motors based on MRAS[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 48-53. [13] Perng Shyh Shing, Lai Yen Shin, Liu Chang Huan.Sensorless vector controller for induction motor drives with parameter identification[C]//Proceedings of the 24th Annual Conference of the IEEE, Aachen, Germany, 1998, 2: 1008-1013. [14] 张兴, 张雨薇, 曹朋朋, 等. 基于定子电流和转子磁链点乘的转子时间常数在线辨识算法稳定性分析[J]. 中国电机工程学报, 2018, 38(16): 4863-4872. Zhang Xing, Zhang Yuwei, Cao Pengpeng, et al.Stability analysis of a dot product of stator currents and rotor flux based online rotor time constant updating algorithm in induction motor drives[J]. Proceedings of the CSEE, 2018, 38(16): 4863-4872. [15] 郭磊磊, 张兴, 杨淑英, 等. 一种改进的异步电机转子磁场定向校正算法[J]. 中国电机工程学报, 2013, 33(24): 127-134. Guo Leilei, Zhang Xing, Yang Shuying, et al.A modified rotor flux oriented correction algorithm of induction motors[J]. Proceedings of the CSEE, 2013, 33(24): 127-134. [16] 曹朋朋, 张兴, 杨淑英, 等. 异步电机基于MRAC的转子时间常数在线辨识算法的统一描述[J]. 电工技术学报, 2017, 32(19): 62-70. Cao Pengpeng, Zhang Xing, Yang Shuying, et al.Unified description of MRAC-based online rotor time constant identification algorithm for induction motors[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 62-70. [17] Dittrich A.Parameter sensitivity of procedures for on-line adaptation of the rotor time constant of induction machines with field oriented control[J]. IEE Proceedings-Electronics Power Applications, 1994, 141(6): 353-359. [18] 文晓燕, 郑琼林, 韦克康, 等. 带零漂补偿和定子电阻自校正的磁链观测器[J]. 中国电机工程学报, 2011, 31(12): 102-107. Wen Xiaoyan, Zheng Qionglin, Wei Kekang, et al.Flux observer with offset compensation and stator resistance self-correction[J]. Proceedings of the CSEE, 2011, 31(12): 102-107. [19] Kan Jingbo, Zhang Kai, Wang Ze.Indirect vector control with simplified rotor resistance adaptation for induction machines[J]. IET Power Electronics, 2015, 8(7): 1284-1294.