Review of Anti-/De-Icing Methods for Wind Turbine Blades under Icing Conditions
Hu Qin1, Wang Huan1, Shu Lichun1, Jiang Xingliang1, Xia Hanlin2
1. Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University Chongqing 400044 China; 2. State Grid Chongqing Electric Power Research Institute Chongqing 401123 China
Abstract:To address the shortage of fossil fuels and environmental pollution, countries around the world are vigorously developing renewable energy. Data shows that, from 2016 to 2022, the cumulative installed capacity of wind power in both the world and China has increased year by year (from 148.64 GW to 365.44 GW in China, and from 487 GW to 906 GW globally), resulting in an increase in the proportion of total wind power generation. Most wind farms are built in high-humidity and cold regions due to the abundant wind energy. However, wind turbine blades often face icing problems in these areas during winter, which causes mechanical vibration and power loss or even shutdown. This not only seriously affects the reliability of wind turbines, but also poses difficulties for power trading and scheduling. Therefore, it is necessary to focus on the icing and anti-/de-icing issues of blades. Firstly, this paper summarizes the physical formation process of icing on wind turbine blade and points out the current lack of accurate mathematical models to describe the relationship between meteorological parameters and blade icing. Analyzing the icing characteristics of the blades, it is believed that the icing area is mainly concentrated on the windward side of the leading edge of the blade tip; Summarized the impact of blade icing on lift coefficient, drag coefficient, and power loss. It is believed that blade icing will cause a decrease in lift coefficient, an increase in drag coefficient, and a power loss of up to 17%~40%. Creatively presented the current challenges, namely: (1) uncertainty of blade icing, (2) accuracy of power prediction under blade icing, (3) feasibility of blade icing defense plan. Secondly, in order to facilitate public understanding and the current research status of anti-/de-icing methods for wind turbine blades, this paper provides a comprehensive review and review of existing relevant literature. (1) Scientifically categorize existing methods into three types: active anti-/de-icing methods (including electric and mechanical forms), passive anti icing methods (including hydrophobic and icephobic coatings, etc.), and collaborative anti-/de-icing methods (including 1+1 and 1+1+1 synergistic forms). (2) This paper introduces the basic principles of specific anti-/de-icing methods, qualitatively or quantitatively analyzes their anti-/de-icing effects, and elaborates on their advantages and disadvantages in detail. Moreover, a separate review was creatively conducted on the icephobic coating. (3) A summary and comparative analysis of all methods were conducted in the form of a table. It is recommended to use electric heating method, electric pulse method, pneumatic pulse method, and icephobic coating, especially the synergistic method with electric heating function, to apply to wind turbine blades, which can achieve all-weather anti-/de-icing, but further practical application verification is needed. Finally, from a holistic perspective, the issue of blade icing detection was considered, and the logical relationship between the three key scientific issues of blade icing detection, resulting power loss, and anti/de-icing was sorted out. It was pointed out that the economic loss caused by blade icing and the economic cost of blade icing detection and anti/de-icing system must follow the principle of economic feasibility, which means economic benefits must be generated, and further qualitative analysis was conducted on the economic feasibility. In addition, this article also provides prospects for key scientific issues and future research trends, namely: (1) Dynamic and real-time detection methods for blade icing. (2) Wind power loss and prediction under icing conditions. (3) Deepening efficient and low-energy consumption anti-/de-icing methods for blades, such as electrothermal method, electric pulse method, pneumatic pulse method, icephobic coating, and collaborative anti-/de-icing methods with electric heating function.
胡琴, 王欢, 舒立春, 蒋兴良, 夏翰林. 覆冰条件下风力发电机叶片防/除冰方法综述[J]. 电工技术学报, 2024, 39(17): 5482-5496.
Hu Qin, Wang Huan, Shu Lichun, Jiang Xingliang, Xia Hanlin. Review of Anti-/De-Icing Methods for Wind Turbine Blades under Icing Conditions. Transactions of China Electrotechnical Society, 2024, 39(17): 5482-5496.
[1] 胡琴, 王欢, 邱刚, 等. 风力发电机叶片覆冰量化分析及其应用[J]. 电工技术学报, 2022, 37(21): 5607-5616. Hu Qin, Wang Huan, Qiu Gang, et al.Quantitative analysis of wind turbine blade icing and its application[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5607-5616. [2] 徐华, 赵萍. 浙江临海括苍山风电场简介及运行分析[J]. 浙江电力, 2000, 19(4): 23-24, 33. Xu Hua, Zhao Ping.Introduction and operation analysis of Linhai Kuocangshan wind power station in Zhejiang Province[J]. Zhejiang Electric Power, 2000, 19(4): 23-24, 33. [3] 黎芷毓. 风力发电机叶片雾凇覆冰数值模拟及自然覆冰验证研究[D]. 重庆: 重庆大学, 2021. Li Zhiyu.Study of numerical simulation of rime icing of wind turbine blade and natural icing verification[D]. Chongqing: Chongqing University, 2021. [4] Laakso T, Baring-Gould I, Durstewitz M, et al.State-of-the-art of wind energy in cold climates[R]. Paris: International Energy Agency, 2003. [5] Parent O, Ilinca A.Anti-icing and de-icing techniques for wind turbines: critical review[J]. Cold Regions Science and Technology, 2011, 65(1): 88-96. [6] 于东玮, 司广全, 孔祥逸, 等. 风机叶片覆冰机理与预测分析[J]. 计算力学学报, 2021, 38(3): 327-336. Yu Dongwei, Si Guangquan, Kong Xiangyi, et al.Icing mechanism and prediction analysis for wind turbine blades[J]. Chinese Journal of Computational Mechanics, 2021, 38(3): 327-336. [7] 梁健, 胡琴, 胡晓东, 等. 小型风力机覆冰环境输出功率及气动特性研究[J]. 工程热物理学报, 2019, 40(10): 2277-2283. Liang Jian, Hu Qin, Hu Xiaodong, et al.Study on the output power and aerodynamic characteristics of iced small wind turbine[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2277-2283. [8] 黎芷毓, 蒋兴良, 韩兴波, 等. 风力发电机叶片的雾凇覆冰数值模拟[J]. 哈尔滨工业大学学报, 2022, 54(3): 155-162. Li Zhiyu, Jiang Xingliang, Han Xingbo, et al.Numerical simulation on rime icing of wind turbine blades[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 155-162. [9] 蒋兴良, 舒立春, 孙才新. 电力系统污秽与覆冰绝缘[M]. 北京: 中国电力出版社, 2009. [10] Etemaddar M, Hansen M O L, Moan T. Wind turbine aerodynamic response under atmospheric icing conditions[J]. Wind Energy, 2014, 17(2): 241-265. [11] Hochart C, Fortin G, Perron J, et al.Wind turbine performance under icing conditions[J]. Wind Energy, 2008, 11(4): 319-333. [12] Fakorede O, Feger Z, Ibrahim H, et al.Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 662-675. [13] 李瀚涛. 覆冰条件下风力机功率特性及其计算模型研究[D]. 重庆: 重庆大学, 2018. Li Hantao.Power performance and its computational model of wind turbines under icing conditions[D]. Chongqing: Chongqing University, 2018. [14] 李瀚涛, 舒立春, 胡琴, 等. 考虑覆冰粗糙度影响的风力发电机叶片气动性能数值仿真[J]. 电工技术学报, 2018, 33(10): 2253-2260. Li Hantao, Shu Lichun, Hu Qin, et al.Numerical simulation of wind turbine blades aerodynamic performance based on ice roughness effect[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2253-2260. [15] Ronsten G.Influence of icing on the power performance of seven NM82-1.5MW wind turbines in Aapua[R]. Stockholm: Elforsk AB, 2009. [16] Homola M C, Virk M S, Nicklasson P J, et al.Performance losses due to ice accretion for a 5 MW wind turbine[J]. Wind Energy, 2012, 15(3): 379-389. [17] Barber S, Wang Y, Jafari S, et al.The impact of ice formation on wind turbine performance and aerodynamics[J]. Journal of Solar Energy Engineering, 2011, 133(1): 1. [18] Lamraoui F, Fortin G, Benoit R, et al.Atmospheric icing impact on wind turbine production[J]. Cold Regions Science and Technology, 2014, 100: 36-49. [19] 舒立春, 李瀚涛, 胡琴, 等. 自然环境叶片覆冰程度对风力机功率损失的影响[J]. 中国电机工程学报, 2018, 38(18): 5599-5605. Shu Lichun, Li Hantao, Hu Qin, et al.Effects of ice degree of blades on power losses of wind turbines at natural environments[J]. Proceedings of the CSEE, 2018, 38(18): 5599-5605. [20] 李驰, 刘纯, 黄越辉, 等. 基于波动特性的风电出力时间序列建模方法研究[J]. 电网技术, 2015, 39(1): 208-214. Li Chi, Liu Chun, Huang Yuehui, et al.Study on the modeling method of wind power time series based on fluctuation characteristics[J]. Power System Technology, 2015, 39(1): 208-214. [21] Scher S, Molinder J.Machine learning-based prediction of icing-related wind power production loss[J]. IEEE Access, 2019, 7: 129421-129429. [22] 舒立春, 戚家浩, 胡琴, 等. 风机叶片电加热除冰及电阻丝布置方式试验研究[J]. 中国电机工程学报, 2017, 37(13): 3816-3822. Shu Lichun, Qi Jiahao, Hu Qin, et al.Experimental study on de-icing and layout of resistance wire by electrical heating for wind turbine blades[J]. Proceedings of the CSEE, 2017, 37(13): 3816-3822. [23] 舒立春, 戚家浩, 胡琴, 等. 风机叶片电加热防冰模型及分区防冰方法[J]. 中国电机工程学报, 2017, 37(5): 1448-1455. Shu Lichun, Qi Jiahao, Hu Qin, et al.Anti-icing model and sectionalized anti-icing method by electrical heating for wind turbine blades[J]. Proceedings of the CSEE, 2017, 37(5): 1448-1455. [24] 舒立春, 杨晨, 胡琴, 等. 风力发电机叶片加热循环控制除冰数值仿真研究[J]. 中国电机工程学报, 2018, 38(24): 7149-7155, 7441. Shu Lichun, Yang Chen, Hu Qin, et al.The numerical study of electrothermal de-icing cycle controlled method for wind turbine blades[J]. Proceedings of the CSEE, 2018, 38(24): 7149-7155, 7441. [25] 胡琴, 杨秀余, 梅冰笑, 等. 风力发电机叶片临界防冰与融冰功率密度分析[J]. 中国电机工程学报, 2015, 35(19): 4997-5002. Hu Qin, Yang Xiuyu, Mei Bingxiao, et al.Analysis of threshold power density for anti-icing and de-icing of wind turbine blade[J]. Proceedings of the CSEE, 2015, 35(19): 4997-5002. [26] 邱刚, 舒立春, 胡琴, 等. 风力发电机叶片防冰的数值计算模型及现场试验研究[J]. 中国电机工程学报, 2018, 38(7): 2198-2204, 2235. Qiu Gang, Shu Lichun, Hu Qin, et al.Numerical anti-icing model and field experimental investigation of wind turbine blade[J]. Proceedings of the CSEE, 2018, 38(7): 2198-2204, 2235. [27] 舒立春, 邱刚, 胡琴, 等. 风力发电机叶片临界除冰功率的数值计算模型及自然环境实验研究[J]. 中国电机工程学报, 2018, 38(13): 3997-4003, 4041. Shu Lichun, Qiu Gang, Hu Qin, et al.Numerical model and field experimental investigation of threshold heat flux of wind turbine de-icing[J]. Proceedings of the CSEE, 2018, 38(13): 3997-4003, 4041. [28] 舒立春, 谭进峰, 胡琴, 等. 网格尺寸对碳纤维丝束风力发电机叶片融冰效果的影响研究[J]. 中国电机工程学报, 2019, 39(13): 4008-4015. Shu Lichun, Tan Jinfeng, Hu Qin, et al.Study on the effect of mesh size on carbon fiber tow wind turbine blade ice melting[J]. Proceedings of the CSEE, 2019, 39(13): 4008-4015. [29] 倪爱清, 王延明, 王继辉, 等. 基于高分子电热膜的风电叶片电热除冰功率密度计算模型[J]. 玻璃钢/复合材料, 2015(9): 17-23. Ni Aiqing, Wang Yanming, Wang Jihui, et al.Computational model of wind turbine blades de-icing power density based on polymer electric heating film[J]. Fiber Reinforced Plastics/Composites, 2015(9): 17-23. [30] Mayer, Ilinca, Fortin, et al. Wind tunnel study of electro-thermal de-icing of wind turbine blades[J]. International Journal of Offshore and Polar Engineering, 2007, 17(3): 182-188. [31] 吕庆, 宁立伟, 颜熹, 等. 基于气热法对风机叶片防冰除冰分析研究[J]. 湖南工程学院学报(自然科学版), 2017, 27(2): 28-32. Lü Qing, Ning Liwei, Yan Xi, et al.Analysis of wind turbine blade de-icing based on gas and heat method[J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2017, 27(2): 28-32. [32] Albers A.Summary of a technical validation of enercon's rotor blade de-icing system[R]. Varel: Deutsche Wind Guard Consulting Gmbh, 2011. [33] 杨馨. 风力发电机叶片耐磨性超疏水涂层的制备及防覆冰性能研究[D]. 重庆: 重庆大学, 2020. Yang Xin.Preparation of abrasion-resistant superhydrophobic coatings for wind turbine blades and study on anti-icing performance[D]. Chongqing: Chongqing University, 2020. [34] 杨博, 宁立伟, 魏克湘, 等. 基于汽热法风力机叶片除冰传热分析[J]. 玻璃钢/复合材料, 2018(4): 68-73. Yang Bo, Ning Liwei, Wei Kexiang, et al.Heat transfer analysis of the de-icing system for wind turbine blades based on gas thermal[J]. Fiber Reinforced Plastics/Composites, 2018(4): 68-73. [35] 王昭力, 刘小春, 文飞, 等. 2 MW风机叶片气热法防除冰的传热试验研究[J]. 可再生能源, 2022, 40(3): 356-361. Wang Zhaoli, Liu Xiaochun, Wen Fei, et al.Heat transfer test research on air heating antiicing/deicing of 2 MW wind turbine blades[J]. Renewable Energy Resources, 2022, 40(3): 356-361. [36] Battisti L.Evaluation of anti-icing energy and power requirement for wind turbine rotors in cold climates[C]//Proceedings of the VII BOREAS Conference, Saarisalka, Finland, 2005: 1-13. [37] 刘韬文, 蒙文川, 戴承伟, 等. 风力发电机防冻融冰综述[J]. 湖北电力, 2019, 43(1): 10-17. Liu Taowen, Meng Wenchuan, Dai Chengwei, et al.An overview of wind turbine generator anti-freezing and deicing[J]. Hubei Electric Power, 2019, 43(1): 10-17. [38] Wang Yangyang, Jiang Xingliang.Design research and experimental verification of the electro-impulse de-icing system for wind turbine blades in the Xuefeng Mountain natural icing station[J]. IEEE Access, 2020, 8: 28915-28924. [39] 陈宇, 蒋兴良, 黄廷帆, 等. 飞机和风机叶片除冰用脉冲线圈结构对瞬态电磁场影响研究[J]. 电工技术学报, 2023, 38(16): 4221-4232. Chen Yu, Jiang Xingliang, Huang Tingfan, et al.Study of the effect of pulsed coil structures on transient electromagnetic fields for aircraft and wind turbine blade de-icing[J]. Transactions of China Electro-technical Society, 2023, 38(16): 4221-4232. [40] 谭海辉, 李录平, 靳攀科, 等. 风力机叶片超声波除冰理论与方法[J]. 中国电机工程学报, 2010, 30(35): 112-117. Tan Haihui, Li Luping, Jin Panke, et al.Ultrasonic de-icing theory and method for wind turbine blades[J]. Proceedings of the CSEE, 2010, 30(35): 112-117. [41] Palacios J, Smith E, Rose J, et al.Instantaneous de-icing of freezer ice via ultrasonic actuation[J]. AIAA Journal, 2011, 49(6): 1158-1167. [42] Yin Congbo, Zhang Zhendong, Wang Zhenjun, et al.Numerical simulation and experimental validation of ultrasonic de-icing system for wind turbine blade[J]. Applied Acoustics, 2016, 114: 19-26. [43] Habibi H, Edwards G, Sannassy C, et al.Modelling and empirical development of an anti/de-icing approach for wind turbine blades through superposition of different types of vibration[J]. Cold Regions Science and Technology, 2016, 128: 1-12. [44] 于周, 舒立春, 胡琴, 等. 覆冰厚度对气动脉冲除冰效果影响的数值仿真与试验验证[J]. 电工技术学报, 2024, 39(3): 844-851. Yu Zhou, Shu Lichun, Hu Qin, et al.Numerical simulation and experimental verification of the influences of icing thicknesses on pneumatic impulse de-icing effects[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 844-851. [45] 于周, 舒立春, 胡琴, 等. 风机叶片气动脉冲除冰结构脱冰计算模型及试验验证[J]. 电工技术学报, 2023, 38(13): 3630-3639. Yu Zhou, Shu Lichun, Hu Qin, et al.De-icing calculation model of pneumatic impulse de-icing structure for wind turbine blades and experiment verification[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3630-3639. [46] Kulinich S A, Farzaneh M.How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces[J]. Langmuir, 2009, 25(16): 8854-8856. [47] Qu Bin, Sun Zhou, Feng Fang, et al.Preparation and anti-icing of hydrophobic polypyrrole coatings on wind turbine blade[J]. International Journal of Rotating Machinery, 2020(2): 1-9. [48] Kozera R, Przybyszewski B, Żołyńska K, et al.Hybrid modification of unsaturated polyester resins to obtain hydro- and icephobic properties[J]. Processes, 2020, 8(12): 1635. [49] 胡建林, 蓝彬桓, 许可, 等. 风机叶片运用疏水性涂层防覆冰的风洞试验研究[J]. 高电压技术, 2018, 44(3): 719-726. Hu Jianlin, Lan Binhuan, Xu Ke, et al.Wind tunnel experimental study for anti-icing performance of wind blades with hydrophobic coatings[J]. High Voltage Engineering, 2018, 44(3): 719-726. [50] Peng Chaoyi, Xing Suli, Yuan Zhiqing, et al.Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade[J]. Applied Surface Science, 2012, 259: 764-768. [51] 冯放, 沈虎, 赵宏伟, 等. 超疏水MoS2纳米涂层叶片防覆冰特性研究[J]. 工程热物理学报, 2021, 42(5): 1168-1175. Feng Fang, Shen Hu, Zhao Hongwei, et al.Research on anti-icing characteristics of super-hydrophobic MoS2 nano-coated blade[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1168-1175. [52] 蒋兴良, 周洪宇, 何凯, 等. 风机叶片运用超疏水涂层防覆冰的性能衰减[J]. 高电压技术, 2019, 45(1): 167-172. Jiang Xingliang, Zhou Hongyu, He Kai, et al.Anti-icing performance degradation for wind blades with superhydrophobic coatings[J]. High Voltage Engineering, 2019, 45(1): 167-172. [53] Kraj A G, Bibeau E L.Measurement method and results of ice adhesion force on the curved surface of a wind turbine blade[J]. Renewable Energy, 2010, 35(4): 741-746. [54] Golovin K, Dhyani A, Thouless M D, et al.Low-interfacial toughness materials for effective large-scale deicing[J]. Science, 2019, 364(6438): 371-375. [55] Susoff M, Siegmann K, Pfaffenroth C, et al.Evaluation of icephobic coatings—screening of different coatings and influence of roughness[J]. Applied Surface Science, 2013, 282: 870-879. [56] 李伟斌, 郝云权, 王建涛, 等. 直升机旋翼结冰影响及防/除冰方法综述[J]. 航空动力学报, 2023, 38(2): 257-268. Li Weibin, Hao Yunquan, Wang Jiantao, et al.Review on influences of helicopter rotor icing and anti-/ de-icing methods[J]. Journal of Aerospace Power, 2023, 38(2): 257-268. [57] Xie Zhenting, Wang Hong, Geng Yang, et al.Carbon-based photothermal superhydrophobic materials with hierarchical structure enhances the anti-icing and photothermal deicing properties[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 48308-48321. [58] He Jianjun, Tian Huanyu, Yang Kaijun, et al.Study on lubrication-photothermal synergistic deicing of CNT coating on wind turbine blades[J]. International Journal of Photoenergy, 2022: 1-8. [59] Liu Zhiyuan, Feng Fang, Li Yan, et al.A corncob biochar-based superhydrophobic photothermal coating with micro-nano-porous rough-structure for ice-phobic properties[J]. Surface and Coatings Technology, 2023, 457: 129299. [60] Elsharkawy M, Tortorella D, Kapatral S, et al.Combating frosting with joule-heated liquid-infused superhydrophobic coatings[J]. Langmuir, 2016, 32(17): 4278-4288. [61] Liu Xiaolin, Chen Huawei, Zhao Zehui, et al.Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications[J]. Surface and Coatings Technology, 2019, 374: 889-896. [62] 朱茂林. 风力发电机叶片电热超疏水涂层的制备及防除冰性能研究[D]. 重庆: 重庆大学, 2021. Zhu Maolin.Preparation of electrothermal super-hydrophobic coating for wind turbine blades and research on its anti-deicing performance[D]. Chongqing: Chongqing University, 2021. [63] 胡琴, 朱茂林, 舒立春, 等. 风力发电机叶片防除冰涂层(二): 温升数值计算及防除冰性能[J]. 电工技术学报, 2024, 39(1): 246-256. Hu Qin, Zhu Maolin, Shu Lichun, et al.Anti-deicing coatings for wind turbine blades part 2: numerical calculation of temperature rise and anti-deicing performance[J]. Transactions of China Electro-technical Society, 2024, 39(1): 246-256. [64] Gao Linyue, Liu Yang, Ma Liqun, et al.A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ ice-phobic surface coating for wind turbine icing mitigation[J]. Renewable Energy, 2019, 140: 943-956. [65] Luo Ruiliang, Chen Xu, Guo Jinyu.Design of deicing device for wind turbine blade based on microwave and ultrasonic wave[J]. Journal of Physics: Conference Series, 2021, 1748(6): 062018. [66] Wei Kexiang, Yang Yue, Zuo Hongyan, et al.A review on ice detection technology and ice elimination technology for wind turbine[J]. Wind Energy, 2020, 23(3): 433-457. [67] Zhao Zehui, Chen Huawei, Zhu Yantong, et al.A robust superhydrophobic anti-icing/de-icing composite coating with electrothermal and auxiliary photothermal performances[J]. Composites Science and Technology, 2022, 227: 109578. [68] Liu Yubo, Xu Rongnian, Luo Ning, et al.All-day anti-icing/de-icing coating by solar-thermal and electric-thermal effects[J]. Advanced Materials Technologies, 2021, 6(11): 2100371. [69] 吕安强, 魏伦. 基于光纤传感技术的风机叶片故障检测技术研究进展[J]. 高压电器, 2022, 58(7): 83-92. Lü Anqiang, Wei Lun.Research progress on fault detection technology of wind turbine blade based on fiber optic sensor[J]. High Voltage Apparatus, 2022, 58(7): 83-92.