Abstract:For obtaining jet plasma with high strength and large area, two distinct modes of two-dimensional plasma jet array discharge at atmospheric pressure in He are generated with honeycomb like electrode arrangements. The discharge characteristics of the two modes array are studied and compared. The influence of the parameters such as the gas flow rate, distance between the jet units and voltage amplitude on mode transition of the jet array is studied. Results show that the jet arrays in He appear two modes, one is intense-coupling mode with high discharge strength and the other is even mode with relative large discharge area. At the same applied voltage amplitude, the discharge power, transmission charge and intensity of the main particle lines in the former mode are higher than those in the latter mode. The distance among the jet units and the gas flow rate are the main factors affecting mode transition of the jet array, while the change in voltage amplitude only affect discharge strength of the jet arrays without affecting mode transition. The discharge is in intense-coupling mode when the distance among the jet units is 0.2mm and the gas flow rate is less than 5L/min, and it will transit to even mode when the gas flow rate is larger than 5L/min. When the distance among the jet units is greater than 0.4mm, the discharge is only in even mode no matter what changes of the applied voltage or gas flow rate.
[1] Lu X, Laroussi M, Puech V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets[J]. Plasma Sources Science Technology, 2012, 21(3): 34005-34021. [2] 董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24): 35-44. Dong Shoulong, Yao Chengguo, Yang Nan, et al. The development of solid-state nanosecond pulsed plasma jet apparatus based on Marx structure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(24): 35-44. [3] Shao T, Zhang C, Wang R X, et al. Comparison of atmospheric-pressure He and Ar plasma jets driven by microsecond pulses[J]. IEEE Transactions on Plasma Science, 2015, 43(3): 726-732. [4] Zhang C, Shao T, Zhou Y, et al. Effect of O 2 additive on spatial uniformity of atmospheric-pressure helium plasma jet array driven by microsecond-duration pulses[J]. Applied Physics Letters, 2014, 105(4): 044102(4). [5] Fang Z, Yang J R, Liu Yuan, et al. Surface treatment of polyethylene terephthalate to improving hydro- philicity using atmospheric pressure plasma jet[J]. IEEE Transactions on Plasma Science, 2013, 41(6): 1627-1634. [6] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7):159-165. Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF 4 content on discharge characteristics of argon atmospheric pressure plasma jet[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 159- 165. [7] 吴淑群, 聂兰兰, 卢新培. 大气压非平衡等离子体射流[J]. 高电压技术, 2016, 41(8): 2602-2624. Wu Shuqun, Nie Lanan, Lu Xinpei. Atmospheric- pressure non-equilibrium plasma jet[J]. High Voltage Engineering, 2016, 41(8): 2602-2624. [8] Shao X J, Jiang N, Zhang G J, et al. Comparative study on the atmospheric pressure plasma jets of helium and argon[J]. Applied Physics Letters, 2012, 101(25): 253509. [9] 方志, 康洺睿, 周耀东, 等. Ar气中1维等离子体射流阵列的实验研究[J]. 高电压技术, 2015, 41(6): 2015-2021. Fang Zhi, Kang Mingrui, Zhou Yaodong, et al. Experimental study of a one-dimensional plasma jet array in Ar[J]. High Voltage Engineering, 2015, 41(6): 2015-2021. [10] Robert E, Darny T, Dozias S, et al. New insights on the propagation of pulsed atmospheric plasma streams: from single jet to multi jet arrays[J]. Physics of Plasmas, 2015, 22(12): 122007. [11] Cao Z, Nie Q, Bayliss D L, et al. Spatially extended atmospheric plasma arrays[J]. Plasma Sources Science and Technology, 2010, 19(2): 025003. [12] Kim J Y, Ballato J, Kim S O. Intense and energetic atmospheric pressure plasma jet arrays[J]. Plasma Processes and Polymers, 2012, 9(3): 253-260. [13] Nie Q Y, Cao Z, Ren C S, et al. A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medi- cine[J]. New Journal of Physics, 1999, 11(11): 115015. [14] Fan Q Q, Qian M Y, Ren C S, et al. Discharge characteristics of a cold-atmospheric-plasma jet array generated with single-electrode configuration[J]. IEEE Transactions on Plasma Science, 2012, 40(6): 1724-1729. [15] Weltmann K D, Fricke K, Stieber M, et al. New non-thermal atmospheric-pressure plasma sources for decontamination of human extremities[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 2963- 2969. [16] Park C Hu, Lee1 J S, Kim J H, et al. Wound healing with non-thermal microplasma jets generated in arrays of hourglass microcavity devices[J]. Journal of Physics D: Applied Physics, 2014, 47(43): 435402. [17] Sun P P, Cho J H, Park C H, et al. Close-packed arrays of plasma jets emanating from microchannels in a transparent polymer[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 2946-2950. [18] Fang Zhi, Ruan Chen, Shao Tao, et al. Two discharge modes in atmospheric pressure plasma jet array in argon[J]. Plasma Sources Science and Technology, 2016, 26(1): 01LT01. [19] Kim S O, Kim J Y, Kim D Y, et al. Intense plasma emission induced by jet-to-jet coupling in atmospheric pressure plasma arrays[J]. Applied Physics Letters, 2012, 101(17): 173503. [20] Furmanski J, Kim J Y, Kim S O. Triple-coupled intense atmospheric pressure plasma jet from honeycomb structural plasma device[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2338- 2339. [21] Babaeva N Y, Kushner M J. Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O 2 into humid air[J]. Plasma Sources Science and Technology, 2014, 23(1): 015007. [22] 方志, 蔡玲玲, 雷枭. 氦气和氖气中大气压均匀介质阻挡放电特性比较[J]. 高电压技术, 2011, 37(7): 1766-1774. Fang Zhi, Cai Lingling, Lei Xiao. Comparison of discharge characteristic of homogeneous dielectric barrier discharge in He and Ne[J]. High Voltage Engineering, 2011, 37(7): 1766-1774. [23] 周亦晓, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 229-238. [24] 方志, 钱晨, 姚正秋. 大气压环环电极结构射流放电仿真模型建立及仿真研究[J]. 电工技术学报, 2016, 31(7): 218-228. Fang Zhi, Qian Chen, Yao Zhengqiu. The model and simulation studies for ring-ring electrode structure jet discharge at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 218- 228. [25] 吴淑群, 董熙, 裴学凯, 等. 基于激光诱导荧光法诊断大气压低温等离子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8): 82-94. Wu Shuqun, Dong Xi, Pei Xuekai, et al. Laser induced fluorescence diagnostics of the temporal and spatial distribution of OH radicals and O atom in a low temperature plasma jet at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 82-94. [26] Ghasemi M, Olszewski P, Bradley J W, et al. Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array[J]. Journal of Physics D: Applied Physics, 2013, 46(5): 052001.