A Numerical Study on the Frequency Effects of the Electrical Characteristics of the Pulsed Dielectric Barrier Discharge in Ar/O2 with High Oxygen Concentration at Atmospheric Pressure
Pan Guangsheng1,2, Tan Zhenyu1,2, Wang Xiaolong1,2, Pan Jie1,2, Huang Qiang1,2
1. School of Electrical Engineering Shandong University Jinan 250061 China; 2. Shandong Provincial Key Laboratory of UHV Transmission Technology and Equipment Jinan 250061 China
Abstract:By means of a 1-D fluid model, the effects of frequency on the atmospheric-pressure Ar/O2 pulsed dielectric barrier discharge (DBD) under high oxygen concentrations (1%~5.0%) were investigated. Under the considered frequency range below 100kHz and oxygen concentrations, the frequency dependences of the discharge current densities were calculated and analyzed. The results show that there are two bipolar discharges, one occurs at the rising edge of Va and the other at the falling edge of Va. Under different oxygen concentrations, the peak values of the two bipolar discharges first reduce and then increase with the increase of frequency, that is, there is a minimum value, where the corresponding frequency of each discharge can be defined as the characteristic frequency. The oxygen concentration dependences of the two characteristic frequencies corresponding to the two bipolar discharges, respectively, are obtained. In addition, when the oxygen concentration is 3.0%, the dominated reaction pathways for the production and consumption of four reactive species (O, O(1D), O2(1Δg) and O3) and their contributions at different frequencies are also given.
潘光胜, 谭震宇, 王晓龙, 潘杰, 黄强. 高氧浓度下大气压Ar/O2脉冲介质阻挡放电频率特性数值研究[J]. 电工技术学报, 2017, 32(20): 71-81.
Pan Guangsheng, Tan Zhenyu, Wang Xiaolong, Pan Jie, Huang Qiang. A Numerical Study on the Frequency Effects of the Electrical Characteristics of the Pulsed Dielectric Barrier Discharge in Ar/O2 with High Oxygen Concentration at Atmospheric Pressure. Transactions of China Electrotechnical Society, 2017, 32(20): 71-81.
[1] Kogelschatz U. Dielectric-barrier discharge: their history, discharge physics, and industrial applica- tions[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46. [2] 章程, 邵涛, 龙凯华, 等. 大气压空气中纳秒脉冲介质阻挡放电均匀性的研究[J]. 电工技术学报, 2010, 25(1): 30-36. Zhang Cheng, Shao Tao, Long Kaihua, et al. Uniform of unipolar nanosecond pulse DBD in atmosphere air[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 30-36. [3] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al. Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [4] 张仲麟, 聂秋月, 王志斌, 等. 大气压介质阻挡放电双频调制技术数值模拟研究[J]. 电工技术学报, 2017, 32(8): 48-54. Zhang Zhonglin, Nie Qiuyue, Wang Zhibin, et al. Numerical studies on the modulated strategy of atmospheric pressure dielectric barrier discharge plasmas driven by dual-frequency[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 48-54. [5] 卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学: 物理学 力学 天文学, 2011, 41(7): 801-815. Lu Xinpei, Yan Pin, Ren Chunsheng, et al. Review on atmospheric pressure pulsed DC discharge[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2011, 41(7): 801-815. [6] Zhang S, Wang W, Jiang P, et al. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge[J]. Journal of Applied Physics, 2013, 114(16): 163301(6). [7] Walsh J L, Liu D X, Iza F, et al. Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges[J]. Journal of Physics D: Applied Physics, 2010, 43(3): 032001(7). [8] 周亦骁, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 229-238. [9] Jin Y, Ren C S, Yang L, et al. Comparative study of the surface cleaning for Ar/He-based plasma jets at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2015, 43(9): 3193-3199. [10] Chung T H, Kang H R, Bae M K. Optical emission diagnostics with electric probe measurements of inductively coupled Ar/O 2 /Ar-O 2 plasmas[J]. Physics of Plasmas, 2012, 19(11): 113502(9). [11] Li S Z, Huang W T, Zhang J, et al. Optical diagnosis of an argon/oxygen needle plasma generated at atmospheric pressure[J]. Applied Physics Letters, 2009, 94(11): 111501(3). [12] Pan J, Tan Z, Liu Y, et al. Effects of oxygen concentration on atmospheric-pressure pulsed dielectric barrier discharges in argon/oxygen mixture[J]. Physics of Plasmas, 2015, 22(9): 093515(8). [13] Lee D, Park J M, Hong S H, et al. Numerical simulation on mode transition of atmospheric diele- ctric barrier discharge in helium-oxygen mixture[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 949-957. [14] Yuan X, Shin J, Raja L L. One-dimensional simulation of multipulse phenomena in dielectric- barrier atmospheric-pressure glow discharges[J]. Vacuum, 2006, 80(11-12): 1199-1205. [15] 高国强, 彭开晟, 董磊, 等. 电压幅值和频率对表面介质阻挡放电与气动特性的影响[J]. 电工技术学报, 2017, 32(8): 55-62. Gao Guoqiang, Peng Kaisheng, Dong Lei, et al. Experimental of surface dielectric barrier discharge and aerodynamic characteristics at different voltage amplitude and frequency[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 55-62. [16] Shao T, Yu Y, Zhang C, et al. Excitation of atmospheric pressure uniform dielectric barrier discharge using repetitive unipolar nanosecond-pulse generator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(6): 1830-1837. [17] 刘熊, 林海丹, 梁义明, 等. 空气中微秒脉冲沿面放电对环氧树脂表面特性影响研究[J]. 电工技术学报, 2015, 30(13): 158-165. Liu Xiong, Lin Haidan, Liang Yiming, et al. Effect of atmospheric-pressure microsecond pulsed discharges on epoxy resin surface[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 158-165. [18] Nie L, Tan Z, Chen B, et al. Effects of frequency on the electrical characteristic of pulse discharges in atmospheric-pressure pure helium[J]. IEEE Transa- ctions on Plasma Science, 2013, 41(6): 1648-1657. [19] Pan G, Tan Z, Pan J, et al. A comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharge in He/O 2 and in Ar/O 2 at atmospheric pressure[J]. Physics of Plasmas, 2016, 23(4): 043508(10). [20] Park G, Lee H, Kim G, et al. Global model of He/O 2 and Ar/O 2 atmospheric pressure glow discharges[J]. Plasma Processes and Polymers, 2008, 5(6): 569-576. [21] Lu X, Xiong Q, Xiong Z, et al. Effect of nano to millisecond pulse on dielectric barrier discharges[J]. IEEE Transactions on Plasma Science, 2009, 37(5): 647-652. [22] Lee M H, Chung C W. Self-consistent global model with multi-step ionizations in inductively coupled plasmas[J]. Physics of Plasmas, 2005, 12(7): 073501(5). [23] Bogaerts A, Gijbels R. Modeling of metastable argon atoms in a direct-current glow discharge[J]. Physical Review A, 1995, 52(5): 3743-3751. [24] Brok W J M, van Dijk J, Bowden M D, et al. A model study of propagation of the first ionization wave during breakdown in a straight tube containing argon[J]. Journal of Physics D: Applied Physics, 2003, 36(16): 1967-1979. [25] Golubovskii Y B, Maiorov V A, Behnke J, et al.Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. Journal of Physics D: Applied Physics, 2002, 35(8): 751-761. [26] Sakiyama Y, Graves D B, Chang H W, et al. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species[J]. Journal of Physics D: Applied Physics, 2012, 45(42): 425201(19). [27] Shi H, Wang Y, Wang D. Nonlinear behavior in the time domain in argon atmosphere dielectric-barrier discharges[J]. Physics of Plasmas, 2016, 15(12): 122306(6). [28] 杨静茹, 方志, 钱晨. 氩氧大气压等离子体射流放电特性的研究[J]. 真空科学与技术学报, 2014, 34(5): 454-460. Yang Jingru, Fang Zhi, Qian Chen. Discharge characteristics of atmospheric pressure argon/oxygen plasma jet[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(5): 454-460. [29] Graves D B. Low temperature plasma biomedicine: a tutorial review[J]. Physics of Plasmas, 2014, 21(8): 080901(12).