Spatially Asymmetric Distribution and Related Influence Factors of Injected Currents in Magnetically-Insulated Induction Voltage Adders
Wei Hao1,2, Sun Fengju2, Qiu Aici1,2, Hu Yixiang2
1. State Key Laboratory of Intense Pulsed Radiation Simulation and Effect Northwest Institute of Nuclear Technology Xi’an 710024 China; 2. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China
Abstract:The special injection manner of magnetically-insulated induction voltage adders (MIVA) leads to the spatially asymmetric distributions of injected currents. It might affect the cavity performances and the characteristics of magnetic insulation in the secondary sides of MIVA, such as the electron sheath, flow impedance, and the current variations. In this paper, a full-size electromagnetic model of an induction cavity was developed, to acquire the spatial distribution of injected currents in the primary sides of cavities and the profiles of magnetic fields in the secondary sides. The dynamic process of the asymmetric coefficient, δ(t), was obtained. Some factors affecting the δ(t) were analyzed in detail, such as the pulse width of injected currents, the insulating medium in the primary sides of cavities, the number of injected pulses and their driver jitter. It is found that, the dynamic process of asymmetric coefficient, δ(t), consists of three phases, i.e., the fast drop process, steady state, and slow decrease process. The pulse width of injected currents affects the duration of the steady state and the subsequent third process. The insulating medium in the primary sides of cavities affects the spatial distributions of injected currents by changing the transmission speed of electrical pulses in cavities. The number of injected pulses has crucial influence on the current distributions. As the two pulses driving the same cavity could not arrive simultaneously, the current distributions would change. Moreover, the current injection experiments of a single-stage cavity in part confirm the simulation results.
魏浩, 孙凤举, 邱爱慈, 呼义翔. 磁绝缘感应电压叠加器注入电流空间非均匀分布及影响因素分析[J]. 电工技术学报, 2017, 32(20): 62-70.
Wei Hao, Sun Fengju, Qiu Aici, Hu Yixiang. Spatially Asymmetric Distribution and Related Influence Factors of Injected Currents in Magnetically-Insulated Induction Voltage Adders. Transactions of China Electrotechnical Society, 2017, 32(20): 62-70.
[1] Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power acceler- ators for high energy density physics experiments[J]. Physical Review Special Topics: Accelerators and Beams, 2015, 18(11): 110401. [2] Deng J J, Xie W P, Feng S P, et al. From concept to reality: a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter and Radiation at Extremes, 2016, 1(1): 48-58. [3] Liu Jianxun, Ma Yanyun, Yang Xiaohu, et al. High- energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 015001. [4] 孙凤举, 邱爱慈, 魏浩, 等. 闪光照相快放电直线型变压器脉冲源新进展[J]. 现代应用物理, 2015, 6(4): 1937-1946. Sun Fengju, Qiu Aici, Wei Hao, et al. Development of fast linear transformer drivers for radiography[J]. Modern Applied Physics, 2015, 6(4): 1937-1946. [5] 孙凤举, 邱爱慈, 魏浩, 等. 快Z箍缩百太瓦级脉冲驱动源概念设计的发展[J]. 现代应用物理, 2017, 8(2): 020102. Sun Fengju, Qiu Aici, Wei Hao, et al. Development of conceptual design on fast Z-pinch pulsed power drivers with hundreds of terawatt[J]. Modern Applied Physics, 2017, 8(2): 020102. [6] 丛培天, 黄涛, 孙铁平, 等. 直线脉冲变压器技术回顾与展望[J]. 高压电器, 2011, 47(12): 86-91. Cong Peitian, Huang Tao, Sun Tieping, et al. Development of linear transformer driver[J]. High Voltage Apparatus, 2011, 47(12): 86-91. [7] Wei Hao, Sun Fengju, Yin Jiahui, et al. numerical simulation of azimuthal uniformity of injection currents in single-point-feed induction voltage adders[J]. Plasma Science and Technology, 2015, 17(3): 235-240. [8] 孔刚玉, 刘定新. 气体等离子体与水溶液的相互作用研究—意义、挑战与新进展[J]. 高电压技术, 2014, 40(10): 2956-2965. Michael G K, Liu Dingxin. Researches on the interaction between gas plasmas and aqueous solutions: significance, challenges and new pro- gresses[J]. High Voltage Engineering, 2014, 40(10): 2956-2965. [9] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685- 705. Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engin- eering, 2016, 42(3): 685-705. [10] 荣命哲, 仲林林, 王小华, 等. 平衡态与非平衡态电弧等离子体微观特性计算研究综述[J]. 电工技术学报, 2016, 31(19): 54-65. Rong Mingzhe, Zhong Linlin, Wang Xiaohua, et al. Review of microscopic property calculation of equilibrium and non-equilibrium arc plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 54-65. [11] 张成博, 刘克富, 邱剑, 等. 纳秒脉冲触发的阵列微空心阴极放电特性[J]. 电工技术学报, 2017, 32(2): 43-52. Zhang Chengbo, Liu Kefu, Qiu Jian. The discharge characteristics of array micro-hollow cathode triggered by nanosecond pulses[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 43- 52. [12] 邵涛, 袁伟群, 孙广生, 等. 常压下重频纳秒脉冲气体放电试验研究[J]. 中国电机工程学报, 2005, 25(8): 161-166. Shao Tao, Yuan Weiqun, Sun Guangsheng, et al. Experimental study of repetitively nanosecond-pulse breakdown in atmospheric air[J] Proceedings of the CSEE, 2005, 25(8): 161-166. [13] 马云飞, 章程, 李传扬, 等. 重频脉冲放电等离子体处理聚合物材料加快表面电荷消散的实验研究[J]. 中国电机工程学报, 2016, 36(6): 1731- 1738. Ma Yunfei, Zhang Cheng, Li Chuanyang, et al. Experimental study of accelerating surface charge dissipation on polymer treated by repetitively pulsed discharge plasmas[J]. Proceedings of the CSEE, 2016, 36(6): 1731-1738. [14] 刘熊, 林海丹, 梁义明, 等. 空气中微秒脉冲沿面放电对环氧树脂表面特性影响研究[J]. 电工技术学报, 2015, 30(13): 158-165. Liu Xiong, Lin Haidan, Liang Yiming, et al. Effect of atmospheric-pressure microsecond pulsed discharges on epoxy resin surface[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 158-165. [15] 陈思乐, 许桂敏, 穆海宝, 等. 低温等离子体处理柴油机尾气的研究进展[J]. 高压电器, 2016, 52(4): 22-29. Chen Sile, Xu Guimin, Mu Haibao, et al. Research progress in treatment of diesel engine exhaust by non-thermal plasmas[J]. High Voltage Apparatus, 2016, 52(4): 22-29. [16] Smith I D, Bailey V L, Fockler J, et al. Design of a radiographic integrated test stand (RITS) based on a voltage adder, to drive a diode immersed in a high magnetic field[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1653-1659. [17] Smith I D. Induction voltage adders and the induction accelerator family[J]. Physical Review Special Topics on Accelerators and Beams, 2004, 7(6): 064801. [18] Ramirez J J, Prestwich K R, Johnson D L, et al. Performance of the Hermes-III gamma ray Simu- lator[C]//5th IEEE International Pulsed Power Conference, California, 1989: 26-31. [19] Maenchen J, Cordova S, Gustwiller J, et al. Inductive voltage adder driven x-ray sources for hydrodynamic radiography[C]//12th IEEE International Pulsed Power Conference, Monterey, USA: IEEE, 1999: 279-282. [20] Smith I, Corcoran P, Carboni V, et al. Induction voltage adder architectures and electrical characteri- stics[C]//14th IEEE International Pulsed Power Conference, Dallas, USA: IEEE, 2003: 371-378. [21] Johnson D, Bailey V L, Altes R, et al. Status of the 10MV, 120kA RITS-6 inductive voltage adder[C]// 15th IEEE International Pulsed Power Conference, Monterey, 2005: 314-317. [22] Thomas K, Beech P, Brown S, et al. Status of the AWE hydrus IVA fabrication[C]//18th IEEE Inter- national Pulsed Power Conference, Chicago, 2011: 1042-1046. [23] 布鲁姆. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008. [24] 孙凤举, 邱爱慈, 杨海亮, 等. 感应电压叠加器驱动阳极杆箍缩二极管型脉冲X射线源[J]. 强激光与粒子束, 2010, 22(4): 936-940. Sun Fengju, Qiu Aici, Yang Hailiang, et al. Pulsed X-ray source based on inductive voltage adder and rod pinch diode for radiography[J]. High Power Laser and Particle Beams, 2010, 22(4): 936-940. [25] 丛培天, 张国伟, 吴撼宇, 等. 3MV感应电压叠加器的磁感应腔研制[J]. 强激光与粒子束, 2011, 23(2): 563-568. Cong Peitian, Zhang Guowei, Wu Hanyu, et al. Design of inductive cavity for 3MV induction voltage adder[J]. High Power Laser and Particle Beams, 2011, 23(2): 563-568. [26] Bruner N, Genoni T, Madrid E, et al. Excitation of voltage oscillations in an induction voltage adder[J]. Physical Review Special Topics on Accelerators and Beams, 2009, 12(7): 070401. [27] Johnson D L, Smith I D, Corcoran P, et al. Magnetic insulation, power flow and pulse power results on RITS-3[C]//14th IEEE International High Power Particle Beams Conference, Albuquerque, USA, 2002: 123-126. [28] Oliver B V, Genoni T C, Johnson D L, et al. Two and three-dimensional MITL power flow studies on RITS[C]//14th IEEE International Pulsed Power Conference, Dallas, 2003: 395-398. [29] Bruner N, Mostrom C, Rose D V, et al. Modeling the RITS-6 transmission line[C]//16th IEEE International Pulsed Power Conference, Albuquerque, 2007: 807- 810. [30] 魏浩. 感应电压叠加器注入电流空间分布及对次级磁绝缘的影响[D]. 西安: 西安交通大学, 2017. [31] 魏浩, 孙凤举, 邱爱慈, 等. 单/双路馈入磁绝缘感应电压叠加器感应腔角向传输线的优化[J]. 高电压技术, 2014, 40(7): 2232-2237. Wei Hao, Sun Fengju, Qiu Aici, et al. Optimization of azimuthal transmission lines for magnetically insulated induction voltage adders driven by single or double pulses[J]. High Voltage Engineering, 2014, 40(7): 2232-2237. [32] Wei H, Sun F J, Qiu A C, et al. Optimized design of azimuthal transmission lines for the cell driven by two PFLs in induction voltage adders[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2421- 2426. [33] Wei H, Sun F J, Qiu A C, et al. Simulation analysis of transformer oil and glycerin as dielectric medium in inductive voltage adders[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(4): 1778-1783. [34] Wei H, Sun F J, Yin J H, et al. Current density distributions on the cathode plates of inductive voltage cells[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2846-2847. [35] Wei H, Sun F J, Liang T X, et al. Low voltage pulse injection test of a single-stage 1MV prototype induction voltage adder cell[J]. Review of Scientific and Instruments, 2014, 85(8): 083506.