Stability Control for Improving the Characteristic of Wind Farm Injection Current During Low Voltage Ride-Through Using Energy Storage System
Liu Ju1, Yao Wei1, Hou Yunhe2, Wen Jinyu1, Chen Xia1
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China; 2. Department of Electrical and Electronic Engineering University of Hong Kong Hong Kong 999077 China
Abstract:According to the grid codes, wind farms must inject reactive power current into power grid during the low voltage ride-through (LVRT) process. This would lead to instability of the wind power system and the LVRT failure of wind farm. A state space model of wind power system including the phase locked loop at the low voltage state was established in this paper, to analyze the instability phenomenon. Then the reasons of the instability phenomenon were well revealed. Finally, a stability control strategy was proposed to improve the stability of the wind power system by utilizing the energy storage system. Simulation results show that the state model of the wind power system at low voltage state can represent the small disturbance stability characteristic of the system. The energy storage system could effectively improve the injection current feature of wind power system and accordingly improve the system stability.
刘巨, 姚伟, 侯云鹤, 文劲宇, 陈霞. 一种储能改善低电压穿越期间风电场注入电流特性的致稳策略[J]. 电工技术学报, 2016, 31(14): 93-103.
Liu Ju, Yao Wei, Hou Yunhe, Wen Jinyu, Chen Xia. Stability Control for Improving the Characteristic of Wind Farm Injection Current During Low Voltage Ride-Through Using Energy Storage System. Transactions of China Electrotechnical Society, 2016, 31(14): 93-103.
[1] 张祥宇, 付媛, 王毅, 等. 含虚拟惯性与阻尼控制的变速风电机组综合PSS控制器[J]. 电工技术学报, 2015, 30(1): 159-169. Zhang Xiangyu, Fu Yuan, Wang Yi, et al. Integrated PSS controller of variable speed wind turbine with virtual inertia and damping control[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 159- 169. [2] 艾小猛, 韩杏宁, 文劲宇, 等. 考虑风电爬坡事件的鲁棒机组组合[J]. 电工技术学报, 2015, 30(24): 188-195. Ai Xiaomeng, Han Xingning, Wen Jinyu, et al. Robust unit commitment considering wind power ramp events[J]. Transactions of China Electro- technical Society, 2015, 30(24): 188-195. [3] 易林, 娄素华, 吴耀武. 基于变寿命模型的改善风电可调度性的电池储能容量优化[J]. 电工技术学报, 2015, 30(15): 53-59. Yi Lin, Lou Suhua, Wu Yaowu, et al. Optimal battery capacity based on lifetime predication for improving the schedulability of the wind power[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 53-59. [4] 徐海亮, 章玮, 贺益康, 等. 双馈型风电机组低电压穿越技术要点及展望[J]. 电力系统自动化, 2013, 37(20): 8-15. Xu Hailiang, Zhang Wei, He Yikang, et al. A review of low voltage ride-through technologies and pro- spects for DFIG wind turbines[J]. Automation of Electric Power Systems, 2013, 37(20): 8-15. [5] 骆皓, 林明耀, 曹阳, 等. 基于暂态磁链补偿前馈的DFIG低穿强励直流灭磁方法[J]. 电工技术学报, 2014, 29(9): 64-73. Luo Hao, Lin Mingyao, Cao Yang, et al. Forceful demagnetization of DC component based on transient feedforward compensation during DFIG’s LVRT[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 64-73. [6] 李建林, 徐少华. 直接驱动型风力发电系统低电压穿越控制策略[J]. 电力自动化设备, 2012, 32(1): 29-33. Li Jianlin, Xu Shaohua. Control strategy of low- voltage ride-through for direct-drive wind power generation system[J]. Electric Power Automation Equipment, 2012, 32(1): 29-33. [7] E ON Netz GmbH. Grid code for high and extra high voltage[EB/OL]. 2006-06-12. http://www.nerc.com/ docs/pc/ivgtf/German_EON_Grid_Code.pdf. [8] TransÉnergie H Q. Technical requirements for the connection of generation facilities to the Hydro- Quebec transmission system: supply requirements for wind generation[DB/EB]. 2003-04-05. http://www. hydroquebec.com/transenergie/fr/commerce/pdf/exigence_raccordement_fev_09_en.pdf. [9] Nordel. Nordic grid code 2007 (Nordic collection of rules)[DB/EB]. 2004. http://webhotel2.tut.fi/units/ set/research/adine/materiaalit/Active%20network/System%20integration/Grid%20codes/Nordel%20grid%20code%202007-00129-01-E.pdf. [10] 全国电力监管标准化技术委员会. GB/T 19963—2011风电场接入电力系统技术规定[S]. 北京: 中国标准出版社, 2011. [11] 严干贵, 侯延鹏, 王健. 抑制超速脱网的双馈感应风电机组低电压穿越控制策略[J]. 电工技术学报, 2015, 30(23): 146-154. Yan Gangui, Hou Yanpeng, Wang Jian. A DFIG wind turbine low-voltage ride-through control strategy restraining over speed tripping off from grid[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 146-154. [12] Awad A S A, El Shatshat R, Salama M M A, et al. Low voltage ride through capability enhancement of wind farms' generators: DVR versus STATCOM[C]// IEEE Power and Energy Society General Meeting, Washington DC, USA, 2014: 1-8. [13] 许建兵, 江全元, 石庆均. 基于储能性DVR的双馈风电机组电压穿越协调[J]. 电力系统自动化, 2013, 37(4): 14-20. Xu Jianbing, Jiang Quanyuan, Shi Qingjun. Coor- dinated control of voltage ride through for DFIG wind turbine system using energy based-DVR[J]. Auto- mation of Electric Power Systems, 2013, 37(4): 14-20. [14] Erlich I, Shewarega F, Engelhardt S, et al. Effect of wind turbine output current during faults on grid voltage and the transient stability of wind parks[C]// IEEE Power and Energy Society General Meeting, Calgary, Canada, 2009: 1-8. [15] Weise B. Impact of K-factor and active current reduction during fault-ride-through of generating units connected via voltage-sourced converters on power system stability[J]. IET Renewable Power Generation, 2015, 9(1): 25-36. [16] Goksu O, Teodorescu R, Bak C L, et al. Instability of wind turbine converters during current injection to low voltage grid faults and PLL frequency based stability solution[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1683-1691. [17] Thacker T, Burgos R, Wang F, et al. Single-phase islanding detection based on phase-locked loop stability[C]//IEEE Energy Conversion Congress and Exposition, San Jose, Canada, 2009: 3371-3377. [18] Zheng Y W, Li Y. Stability analysis of doubly-fed wind power generation system based on phase-locked loop[C]//International Conference on Electrical Machines and Systems, Wuhan, China, 2008: 2251-2254. [19] Zhang J, Xu D H, Shen G Q, et al. An improved islanding detection method for a grid-connected inverter with intermittent bilateral reactive power variation[J]. IEEE Transactions on Power Electronic, 2013, 28(1): 268-278. [20] Dong D, Wen B, Boroyevich D, et al. Analysis of phase-locked loop low-frequency stability in three- phase grid-connected power converters considering impedance interactions[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 310-321. [21] 张庆海, 彭楚武, 陈燕东, 等. 一种微电网多逆变器并联运行控制策略[J]. 中国电机工程学报, 2012, 32(25): 126-132. Zhang Qinghai, Peng Chuwu, Chen Yandong, et al. A control strategy for parallel operation of multi- inverters in microgrid[J]. Proceedings of the CSEE, 2012, 32(25): 126-132. [22] 袁小明, 程时杰, 文劲宇. 储能技术在解决大规模风电并网问题中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 14-18. Yuan Xiaoming, Cheng Shijie, Wen Jinyu. Prospects analysis of energy storage application in grid integration of large scale wind power[J]. Automation of Electric Power Systems, 2013, 37(1): 14-18. [23] Roberts B P, Sandberg C. The role of energy storage in development of smart grids[J]. Proceedings of the IEEE, 2011, 99(6): 1139-1144. [24] Carnegie R, Gotham D, Nderitu D. Utility scale energy storage systems benefits, applications, and technologies[R]. State Utility Forecasting Group, 2013. [25] 刘金虹, 张辉, 李洁, 等. SMES用于双馈发电机故障穿越的研究[J]. 电工技术学报, 2015, 30(22): 199-205. Liu Jinhong, Zhang Hui, Li Jie, et al. Application of SMES to improve fault voltage ride through capability of doubly fed induction generator[J]. Transactions of China Electrontechnical Society, 2015, 30(22): 199-205. [26] 李建林, 田立亭, 来小康. 能源互联网背景下的电力储能技术展望[J]. 电力系统自动化, 2015, 39(23): 15-25. Li Jianlin, Tian Liting, Lai Xiaokang. Outlook of electrical energy technologies under energy internet background[J]. Automation of Electric Power Systems, 2015, 39(23): 15-25. [27] Sui X C, Tang Y F, He H B, et al. Energy-storage- based low-frequency oscillation damping control using particle swarm optimization and heuristic dynamic programming[J]. IEEE Transactions on Power Systems, 2014, 29(5): 2539-2548. [28] 张川, 杨雷, 牛童阳, 等. 平抑风电出力波动储能技术比较及分析[J]. 电力系统保护与控制, 2015, 43(7): 149-154. Zhang Chuan, Yang Lei, Niu Tongyang, et al. Comparison and analysis of energy storage techno- logy to balance fluctuation of wind power output[J]. Power System Protection and Control, 2015, 43(7): 149-154. [29] 刘巨, 姚伟, 文劲宇, 等. 一种基于储能技术的风电场虚拟惯量补偿策略[J]. 中国电机工程学报, 2015, 35(7): 1596-1605. Liu Ju, Yao Wei, Wen Jinyu, et al. A wind farm virtual inertia compensation strategy based on energy storage[J]. Proceedings of the CSEE, 2015, 35(7): 1596-1605. [30] 水利电力部西北电力设计院. 电力工程电气设计手册(一)电气一次部分[M]. 北京: 中国电力出版社, 1989.