Electromagnetic Acoustic Emission Detection Method of Ferromagnetic Materials Based on the EMAT
Jin Liang1, Kou Xiaofei1, Guo Fukun1, Yang Qingxin1, Du Chongjie2
1. Key Laboratory of Advanced Electrical Engineering and Energy Technology Tianjin Polytechnic University Tianjin 300387 China; 2. State Grid Hebei Electric Power Company Shijiazhuang 050021 China
Abstract:The electromagnetic acoustic transducer (EMAT) is widely used in non-destructive testing and non-destructive evaluation due to its feature of non-contact testing. However, researches and reports on how to use it to judge the crack activity have not been seen. Since the electromagnetic acoustic emission technology can be used to detect microcracks and judge their activity, the detection by EMAT on the electromagnetic acoustic emission of ferromagnetic materials is realized in an innovative manner on the basis of taking the magnetostrictive effect into consideration and according to the principles and properties of the two detection methods of EMAT and electromagnetic acoustic emission technology. This paper offers simulation analyses and experiments on EMAT and provides a judgment basis for the crack activity. The simulation and experimental results show that EMAT can generate acoustic emission signals in the ferromagnetic material and accomplish the destruction assessment on the ferromagnetic material, which provides theoretical and practical instructions in the judgment of crack activity in actual detections by EMAT.
金亮, 寇晓斐, 郭富坤, 杨庆新, 杜崇杰. 基于电磁超声换能器的铁磁材料电磁声发射检测方法[J]. 电工技术学报, 2017, 32(18): 98-105.
Jin Liang, Kou Xiaofei, Guo Fukun, Yang Qingxin, Du Chongjie. Electromagnetic Acoustic Emission Detection Method of Ferromagnetic Materials Based on the EMAT. Transactions of China Electrotechnical Society, 2017, 32(18): 98-105.
[1] NB/T 47013.9—2012 承压设备无损检测 第9部分: 声发射检测[S]. [2] Hensman Jamesj, Pullin Rhys, Eaton Markj, et al. Detecting and identifying artificial acoustic emission signals in an industrial fatigue environment[J]. Applied Mechanics & Materials, 2008, 13-14(4): 18229-18240. [3] Finkel P, Godinez V. Electromagnetic stimulation of the ultrasonic signal for nondestructive detection of ferromagnetic inclusions and flaws[J]. IEEE Transa- ctions on Magnetics, 2004, 40(4): 2179-2181. [4] 张闯, 刘素贞, 金亮, 等. 基于大电流直接加载的电磁声发射试验[J]. 电工技术学报, 2013, 28(1): 101-105. Zhang Chuang, Liu Suzhen, Jin Liang, et al. Experimental study of electromagnetically induced acoustic emission based on high current loading directly[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 101-105. [5] 刘素贞, 金亮, 张闯, 等. 电磁声发射检测技术的涡流激励方法[J]. 电工技术学报, 2012, 27(7): 153-159. Liu Suzhen, Jin Liang, Zhang Chuang, et al. Eddy current exciting method for electromagnetically induced acous[J]. Transactions of China Electro- technical Society, 2012, 27(7): 153-159. [6] Jin Liang, Yang Qingxin, Liu Suzhen, et al. Enhanced acoustic emission detection induced by electro- magnetic stimulation with external magnetic field[J]. IEEE Transactions on Magnetics, 2011, 47(10): 3284-3287. [7] 杨素梅, 陈宏艳, 张闯, 等. 基于小波原理的电磁声发射信号降噪研究[J]. 计算机工程与设计, 2014, 35(4): 1447-1451. Yang Sumei, Chen Hongyan, Zhang Chuang, et al. De-noising research of electromagnetic acoustic emission signal based on wavelet theory[J]. Computer Engineering and Design, 2014, 35(4): 1447-1451. [8] 蔡智超, 刘素贞, 金亮, 等. 电磁声发射-电磁超声的复合检测原理及激励线圈设计[J]. 电工技术学报, 2013, 28(6): 28-33. Cai Zhichao, Liu Suzhen, Jin Liang, et al. Principle of integrating electromagnetically induced acoustic emission with electromagnetic ultrasonic testing and design of exciting coil[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 28-33. [9] Wei Zheng, Huang Songling, Wang Shen, et al. Magnetostriction-based omni-directional guided wave transducer for high-accuracy tomography of steel plate defects[J]. IEEE Sensors Journal, 2015, 15(11): 6549-6558. [10] 杨理践, 魏鸿博, 高松巍. 电磁超声表面波的铝板检测技术[J]. 无损探伤, 2013, 37(2): 15-17. Yang Lijian, Wei Hongbo, Gao Songwei. Electro- magnetic ultrasonic surface wave of aluminum plate detection technology[J]. Nonde Structive Inspection, 2013, 37(2): 15-17. [11] Jian X, Dixon S, Quirk K, et al. Electromagnetic acoustic transducers for in and out of plane ultrasonic wave detection[J]. Sensors and Actuators A: Physical, 2008, 148(1): 51-56. [12] Ribichini R, Cegla F, Nagy Pb, et al. Experimental and numerical evaluation of electromagnetic acoustic transducer performance on steel materials[J]. NDT & E International, 2012, 45(1): 32-38. [13] Ribichini R, Nagy Pb, Ogi H. The impact of magnetostriction on the transduction of normal bias field EMATs[J]. NDT & E International, 2012, 51: 8-15. [14] Rouge C, Lhémery A, Aristégui C. EMAT generation of bulk forces in a ferromagnetic plate and their equivalent surface stresses[J]. Journal of Physics: Conference Series, 12th Anglo-French Physical Acoustics Conference, 2014, doi:10.1088/1742- 6596/498/1/012013. [15] Rouge C. Frequency spectra of magnetostrictive and Lorentz forces generated in ferromagnetic materials by a CW excited EMAT[J]. Journal of Physics: Conference Series, 12th Anglo-French Physical Acoustics Conference, 2014, doi:10.1088/1742- 6596/498/1/012014. [16] 祝丽花, 杨庆新, 闫荣格, 等. 电力变压器铁心磁致伸缩力的数值计算[J]. 变压器, 2012, 49(6): 9-13. Zhu Lihua, Yang Qingxin, Yan Rongge, et al. Numerical calculation of magnetostrictive stress of core in power transformer[J]. Transformer, 2012, 49(6): 9-13. [17] 王彬, 屈稳太, 邬义杰, 等. 超磁致伸缩材料磁滞建模方法国内外研究现状评述[J]. 功能材料, 2013, 44(16): 2295-2300. Wang Bin, Qu Wentai, Wu Yijie, et al. Review on hysteretic modeling methods of giant magneto- strictive materials[J]. Journal of Functional Materials, 2013, 44(16): 2295-2300. [18] 祝丽花, 杨庆新, 闫荣格, 等. 考虑磁致伸缩效应电力变压器振动噪声的研究[J]. 电工技术学报, 2013, 28(4): 1-6. Zhu Lihua, Yang Qingxin, Yan Rongge, et al. Research on vibration and noise of power transformer cores including magnetostriction effects[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(4): 1-6.