AC Flashover Characteristics of Composite Suspension Insulators under Heavy Rainstorm
Hu Qin1, Chen Xuye1, Wen Jun2, Rong Wenqi1, Wei Yanan2
1. XuefengMountain Energy Equipment Safety National Observation and Research Station Chongqing University Chongqing 400044 China;
2. State Grid Wenzhou Power Supply Company Wenzhou 325000 China
With global climate warming, the frequency of heavy rainstorm events is increasing. During heavy rainstorms, composite suspension insulator strings are prone to reduced creepage distance utilization and potential rain flashover accidents due to the sudden increase in rain intensity and rain columns bridging the skirt gaps. Since the rod diameter and skirt diameter of composite suspension insulators are smaller than those of large-diameter composite pin insulators, and there are significant differences in skirt structure and creepage distance, the rain flashover characteristics of suspension insulators cannot be equated with pin insulators. Hence, there is insufficient data on the rain flashover characteristics of composite suspension insulators.
This paper conducts artificial rain flashover tests under strong rainfall conditions using five different skirt structures of composite insulators. It investigates the effects of rain intensity and water conductivity on insulator AC flashover characteristics by analyzing the rain column length at the skirt edge, simulation models, arc development paths, and critical leakage currents. A formula for calculating the unit insulator height AC flashover voltage under the combined effects of rain intensity and water conductivity is proposed and verified for accuracy.
Results indicate that the unit insulator height rain flashover voltage is negatively correlated with rain intensity and water conductivity, following an exponential decay function. The voltage gradient reduction can reach 35.7% and 34.6% respectively due to these factors. The rainfall intensity of 9 mm/min can be considered the tipping point between non-extreme and extreme rainfall. Additionally, composite insulators with larger skirt diameters and skirt spacings are more significantly affected by rain intensity, while the impact of water conductivity is consistent across different skirt parameters. When the rainfall intensity is low, the shorter rain column causes the arc to develop along the path of "rain column-air gap-small skirt surface." When the rainfall intensity is high, the rain column is longer, and the vertical air gap within the rain column is directly broken down, leading to the arc development path of “rain column-vertical air gap-large skirt surface”.
In addition, the maximum length of the rain column at the skirt increases with rain intensity and varies with skirt diameter and spacing. The arc development path differs significantly among insulators with different skirt parameters. Insulators with larger skirt diameters and spacings exhibit a combined air gap and skirt surface discharge path, with reduced rain column bridging the skirt gap due to effective skirt coverage, resulting in higher creepage utilization. Therefore, insulators with larger skirt diameters and spacings can effectively enhance the insulation strength. Due to the influence of the number of charged particles in the water and the area covered by the water film, the average critical leakage current increases with rain intensity and water conductivity, which increases the energy gained by the electric arc and promotes the development of local arcs and the formation of discharge channels. During heavy rainstorms, to reduce surface leakage current on composite insulators and prevent rainwater from bridging the skirts to form a “rain pillar-vertical air gap” continuous arc path, it is recommended to use composite insulators with larger inter-skirt spacing and skirt diameters in regions prone to frequent heavy rainfall.
胡琴, 陈旭烨, 闻君, 荣文奇, 魏亚楠. 强暴雨天气下复合悬式绝缘子交流闪络特性[J]. 电工技术学报, 0, (): 2492939-2492939.
Hu Qin, Chen Xuye, Wen Jun, Rong Wenqi, Wei Yanan. AC Flashover Characteristics of Composite Suspension Insulators under Heavy Rainstorm. Transactions of China Electrotechnical Society, 0, (): 2492939-2492939.
[1] 韦晓星, 黎建平, 楚金伟, 等. 换流站复合外绝缘应用及雨闪事故分析[J]. 高电压技术, 2017, 43(12): 3958-3963.
Wei Xiaoxing, Li Jianping, Chu Jinwei, et al.Application of composite insulators and analysis of rain flashover in converter stations[J]. High Voltage Engineering, 2017, 43(12): 3958-3963.
[2] McDermid W, Black T. Experience with preventing external flashovers in HVDC converter stations[C]//Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 2008: 81-84.
[3] 周龙武. 强暴雨条件下绝缘子串交流闪络特性与闪络模型研究[D]. 重庆: 重庆大学, 2013.
Zhou Longwu.Study on AC flashover performance and flashover model of insulator strings under heavy rainstorms[D]. Chongqing: Chongqing University, 2013.
[4] 李晓刚, 谢敏, 刘祝鸿, 等. 基于BP神经网络模型的复合绝缘子伞裙优化技术[J]. 高压电器, 2022, 58(11): 98-105.
Li Xiaogang, Xie Min, Liu Zhuhong, et al.Optimization technology of composite insulator shed based on BP neural network model[J]. High Voltage Apparatus, 2022, 58(11): 98-105.
[5] 张福增, 赵锋, 王黎明, 等. 高海拔地区复合支柱绝缘子的污雨闪特性[J]. 中国电机工程学报, 2010, 30(1): 14-19.
Zhang Fuzeng, Zhao Feng, Wang Liming, et al.Wet flashover characteristic of composite post insulators at high altitudes[J]. Proceedings of the CSEE, 2010, 30(1): 14-19.
[6] 梁允, 李哲, 周龙武, 等. 强降雨条件下试验方式对瓷和玻璃绝缘子串交流闪络特性的影响[J]. 高压电器, 2015, 51(11): 199-204.
Liang Yun, Li Zhe, Zhou Longwu, et al.Effect of electrical test method on AC flashover voltage of porcelain and glass insulators in heavy rain[J]. High Voltage Apparatus, 2015, 51(11): 199-204.
[7] 刘琴, 谢梁, 南敬, 等. 高压复合支柱绝缘子外绝缘特性及防冰伞应用[J]. 高电压技术, 2020, 46(8): 2872-2879.
Liu Qin, Xie Liang, Nan Jing, et al.External insulation characteristics and anti-ice umbrella application of HV composite post insulators[J]. High Voltage Engineering, 2020, 46(8): 2872-2879.
[8] Yang Lin, Shang Gaofeng, Liao Yifan, et al.Full-time domain deformation characteristics of water drop on sheds edge causing insulation failure of large-diameter composite post insulators under heavy rainfall[J]. IET Science, Measurement & Technology, 2022, 16(3): 181-192.
[9] Sun Yijie, Yang Lin, Shang Gaofeng, et al.Effects of dynamic deformation of pendant water drops on the electric field between hollow porcelain insulator sheds under extreme rainfall[J]. High Voltage, 2022, 7(1): 86-97.
[10] Yang Lin, Kuang Zhiqiang, Sun Yijie, et al.Study on surface rainwater and arc characteristics of high-voltage bushing with booster sheds under heavy rainfall[J]. IEEE Access, 2020, 8: 146865-146875.
[11] Hao Yanpeng, Liao Yifan, Kuang Zhiqiang, et al.Experimental investigation on influence of shed parameters on surface rainwater characteristics of large-diameter composite post insulators under rain conditions[J]. Energies, 2020, 13(19): 5011.
[12] 刘蕾, 申萌, 郝宇亮, 等. 强降雨下不同安装角度的空心复合绝缘子冲击闪络特性研究[J]. 电瓷避雷器, 2021(4): 184-190.
Liu Lei, Shen Meng, Hao Yuliang, et al.Impulse flashover characteristics of hollow composite insulators with different installation angles under heavy rainfall[J]. Insulators and Surge Arresters, 2021(4): 184-190.
[13] 黎鹏, 黎子晋, 王申华, 等. 基于微波透射法的复合绝缘子硅橡胶老化状态检测方法[J]. 电工技术学报, 2023, 38(23): 6503-6513.
Li Peng, Li Zijin, Wang Shenhua, et al.Aging state detection method of composite insulator silicone rubber based on microwave transmission method[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6503-6513.
[14] 刘贺晨, 胡如法, 刘云鹏, 等. 220 kV退役复合绝缘子芯棒整体回收再利用可行性研究[J]. 电工技术学报, 2024, 39(11): 3433-3443.
Liu Hechen, Hu Rufa, Liu Yunpeng, et al.Feasibility of the overall recycling of 220 kV retired composite insulator core rods[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3433-3443.
[15] 国家能源局. ±500kV及以上电压等级直流棒形悬式复合绝缘子技术条件: DL/T 810—2012[S]. 北京: 中国电力出版社, 2012.
[16] 宋治波, 杨昊, 申巍, 等. 交流电压下伞型结构对染污绝缘子电弧路径及绝缘性能的影响[J]. 电工技术学报, 2024, 39(13): 4116-4126.
Song Zhibo, Yang Hao, Shen Wei, et al.Influence of umbrella structure on the arc path and insulating properties of contaminated insulators under AC voltage[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 4116-4126.
[17] 国家能源局. 污秽条件高压瓷套管的人工淋雨试验方法: DL/T 383—2010[S]. 北京: 中国电力出版社, 2011.
[18] Mizuno Y, Kusada H, Naito K.Effect of climatic conditions on contamination flashover voltage of insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(3): 286-289.
[19] 侯纪勇, 徐志军, 程政, 等. 高海拔高电压等级调相机升压变压器套管的防雨闪措施[J]. 浙江电力, 2023, 42(4): 88-94.
Hou Jiyong, Xu Zhijun, Cheng Zheng, et al.A study on rain flashover protection measures for bushings of high voltage class stepup transformer with synchronous condenser at high altitudes[J]. Zhejiang Electric Power, 2023, 42(4): 88-94.
[20] Liao Yifan, Wang Qiao, Yang Lin, et al.Discharge behavior and morphological characteristics of suspended water-drop on shed edge during rain flashover of polluted large-diameter post insulator[J]. Energies, 2021, 14(6): 1652.
[21] 张东东, 罗威, 黄宵宁, 等. 染污绝缘子放电空间电场时频特性研究[J]. 电工技术学报, 2024, 39(9): 2873-2886.
Zhang Dongdong, Luo Wei, Huang Xiaoning, et al.Time and frequency domain characteristics of spatial electric field during the discharge of polluted insulator[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2873-2886.
[22] 胡毅, 王力农, 邵瑰玮, 等. 风雨对导线—杆塔空气间隙工频放电特性的影响[J]. 高电压技术, 2008, 34(5): 845-850.
Hu Yi, Wang Linong, Shao Guiwei, et al.Influence of rain and wind on power frequency discharge characteristic of conductor-to-tower air gap[J]. High Voltage Engineering, 2008, 34(5): 845-850.
[23] 董冰冰, 宋家乐, 李特, 等. 强暴雨条件下棒-板间隙雨柱断裂特征仿真与试验研究[J]. 电工技术学报, 2023, 38(22): 6230-6240.
Dong Bingbing, Song Jiale, Li Te, et al.Simulation and experimental study of break-up characteristics of water streams in rod-plate air gap under heavy rain conditions[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 6230-6240.
[24] 胡建林, 石璧, 杨晓辉, 等. 强降雨条件下空气间隙长波前操作冲击放电特性[J]. 高电压技术, 2018, 44(12): 3888-3895.
Hu Jianlin, Shi Bi, Yang Xiaohui, et al.Discharge characteristics of air gap subject to long wavefront switching impulse voltage under heavy rain condition[J]. High Voltage Engineering, 2018, 44(12): 3888-3895.
[25] 彭华东, 伍炜卫, 胡琴, 等. 雾水电导率对交流输电线路电晕放电量的影响[J]. 高电压技术, 2018, 44(2): 548-553.
Peng Huadong, Wu Weiwei, Hu Qin, et al.Influence of impurity water conductivity on corona discharge quantity of AC transmission line[J]. High Voltage Engineering, 2018, 44(2): 548-553.
[26] 迟潇潇, 尹占娥, 王轩, 等. 我国极端降水阈值确定方法的对比研究[J]. 灾害学, 2015, 30(3): 186-190.
Chi Xiaoxiao, Yin Zhane, Wang Xuan, et al.A comparison of methods for benchmarking the threshold of daily precipitation extremes in China[J]. Journal of Catastrophology, 2015, 30(3): 186-190.
[27] 董冰冰, 宋家乐, 李特, 等. 强暴雨条件下110 kV硅橡胶绝缘子雷电冲击电弧发展过程与闪络特性[J]. 高电压技术, 2023, 49(2): 525-535.
Dong Bingbing, Song Jiale, Li Te, et al.Lightning impulse arc development process and flashover characteristics of 110 kV SIR insulators under heavy rainstorms[J]. High Voltage Engineering, 2023, 49(2): 525-535.
[28] 葛自良, 马宁生, 章昌奕. 空气中固体电介质上纳秒正脉冲表面放电过程[J]. 同济大学学报(自然科学版), 2001, 29(6): 708-710.
Ge Ziliang, Ma Ningsheng, Zhang Changyi.Study on formation of surface discharge on dielectric plate under positive ns impulse voltage in air[J]. Journal of Tongji University, 2001, 29(6): 708-710.