电工技术学报  2024, Vol. 39 Issue (8): 2485-2495    DOI: 10.19595/j.cnki.1000-6753.tces.230099
电力电子 |
散热底板对IGBT模块功率循环老化寿命的影响
常桂钦1,2, 罗海辉2, 方超2, 陈杰2, 黄永章1
1.新能源电力系统国家重点实验室(华北电力大学) 北京 102206;
2.株洲中车时代半导体有限公司 株洲 412000
Influence of Heat Dissipation Baseplate on Power Cycling Lifetime of IGBT Modules
Chang Guiqin1,2, Luo Haihui2, Fang Chao2, Chen Jie2, Huang Yongzhang1
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electrical Power University Beijing 102206 China;
2. Zhuzhou CRRC Times Semiconductor Co. Ltd Zhuzhou 412000 China
全文: PDF (13073 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 功率半导体模块通常采用减小结壳热阻的方式来降低工作结温,集成Pin-Fin基板代替平板基板是一种有效的选择。两种封装结构的热阻抗特性不同,可能对其失效机理及应用寿命产生影响。针对平板基板和集成Pin-Fin基板两种常见车规级IGBT模块进行了相同热力测试条件(结温差100 K,最高结温150℃)下的功率循环试验,结果表明,散热更强的Pin-Fin模块功率循环寿命低于平板模块。失效分析显示,两者失效模式均为键合线脱附,但Pin-Fin模块的键合失效点集中在芯片中心区域,而平板模块的键合失效点则较为分散。基于电-热-力耦合分析方法,建立功率循环试验的有限元仿真模型,结果表明,Pin-Fin模块的芯片温变梯度更大,芯片中心区域键合点温度更高,使芯片中心区域的键合点塑性变形更大,导致其寿命较平板模块更短,与试验结果吻合。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
常桂钦
罗海辉
方超
陈杰
黄永章
关键词 绝缘栅双极型晶体管散热底板热阻抗功率循环寿命有限元分析    
Abstract:The insulated gate bipolar transistor (IGBT) module is the core component of an electric vehicle converter. Power cycling lifetime is a key index for IGBT module reliability. In engineering, the Pin-Fin baseplate of the IGBT module is used to reduce thermal resistance and operating junction temperature to achieve reliability improvement. This paper evaluates the reliability differences between the flat baseplate module and the Pin-Fin baseplate module.
Firstly, the power cycling lifetime test is carried out on IGBT modules with different heat dissipation baseplates. After the experiment, the samples are dissected and analyzed to determine failure mode. Secondly, a three-dimensional finite element analysis model of the same size is established, and the simulation calculation of electro-thermal-mechanical multi-physical field coupling is carried out. The load conditions of the simulation are the same as those of the power cycling test. The temperature distribution, the temperature change process of the chip junction, and the plastic strain of the bonding wires are obtained. Finally, the influence of different heat dissipation baseplates on the power cycling lifetime is obtained by comparing the experimental and simulation results.
The experimental results show that the collector-emitter saturation voltage increase ratio is greater than the thermal resistance increase ratio when the module fails under the second-level power cycling test condition. The sudden change of saturation voltage was also observed during the test, indicating that the failure mode of the module was bonding wires lift-off. Under the same thermal test conditions, the power cycling lifetime of the flat baseplate module is 9.2% higher than that of the Pin-Fin baseplate module. The disassembly analysis shows that the lift-off bonding wires of the Pin-Fin module are mainly concentrated in the center of the chip, while the flat baseplate module is dispersed. The finite element analysis shows that the temperature difference of the Pin-Fin module is larger, and the temperature distribution is more uneven than that of the flat baseplate module. Under the same average junction temperature change, the maximum plastic deformation of Pin-Fin baseplate module bonding wires is higher than that of flat baseplate module after a long time cumulative effect, so that the power cycling life of Pin-Fin baseplate module is lower than that of flat baseplate module.
The following conclusions can be obtained. (1) Regarding package reliability, under the same junction temperature fluctuation and maximum junction temperature, compared with the traditional baseplate module, the surface temperature distribution of Pin-Fin baseplate module chips is more uneven, the maximum temperature of chips is higher, and the plastic deformation of center bonding wires is larger, resulting in a shorter power cycling lifetime. (2) Regarding application reliability, under the same output current, the service lifetime of the Pin-Fin baseplate module is higher than that of the flat baseplate module due to its lower thermal resistance and lower fluctuation of its maximum junction temperature. (3) To meet multiple application requirements, the module design needs to consider the current capacity and reliability capability comprehensively. For the Pin-Fin baseplate module, measures should be taken to improve its reliability while replacing the heat dissipation baseplate to reduce the thermal resistance of the module and achieve the same power cycling life.
Key wordsInsulated gate bipolar transistor (IGBT)    heat dissipation baseplate    thermal impedance    power cycling lifetime    finite element analysis   
收稿日期: 2023-01-18     
PACS: TM46  
基金资助:国家重点研发计划资助项目(2020YFB0407702)
通讯作者: 黄永章 男,1962年生,教授,博士生导师,研究方向为功率半导体器件封装及可靠性。E-mail: huang_y_z@ncepu.edu.cn   
作者简介: 常桂钦 男,1983年生,博士研究生,研究方向为大功率半导体器件封装设计、工艺及可靠性。E-mail: changgq@csrzic.com
引用本文:   
常桂钦, 罗海辉, 方超, 陈杰, 黄永章. 散热底板对IGBT模块功率循环老化寿命的影响[J]. 电工技术学报, 2024, 39(8): 2485-2495. Chang Guiqin, Luo Haihui, Fang Chao, Chen Jie, Huang Yongzhang. Influence of Heat Dissipation Baseplate on Power Cycling Lifetime of IGBT Modules. Transactions of China Electrotechnical Society, 2024, 39(8): 2485-2495.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.230099          https://dgjsxb.ces-transaction.com/CN/Y2024/V39/I8/2485