[1] 李俊杰, 梅云辉, 梁玉, 等. 功率器件高电压封装用复合电介质灌封材料研究[J]. 电工技术学报, 2022, 37(3): 786-792.
Li Junjie, Mei Yunhui, Liang Yu, et al.Study on composite dielectric encapsulation materials for high voltage power device packaging[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 786-792.
[2] Wang Yangang, Wu Yibo, Jones S, et al.Challenges and trends of high power IGBT module packaging[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 2014: 1-7.
[3] 王磊, 魏晓光, 唐新灵, 等. 功率器件封装结构热设计综述[J/OL]. 中国电机工程学报, 2023: 1-28[2023-10-25]. https://doi.org/10.13334/j.0258-8013.pcsee. 230136.
Wang Lei, Wei Xiaoguang, Tang Xinling, et al. Review on thermal design of power device package structures [J/OL]. Proceedings of the CSEE, 2023: 1-28[2023-10-25]. https://doi.org/10.13334/j.0258-8013.pcsee. 230136.
[4] 李文艺, 王亚林, 尹毅. 高压功率模块封装绝缘的可靠性研究综述[J]. 中国电机工程学报, 2022, 42(14): 5312-5326.
Li Wenyi, Wang Yalin, Yin Yi.Review of packaging insulation reliability for high voltage power module[J]. Proceedings of the CSEE, 2022, 42(14): 5312-5326.
[5] 蒋起航, 王威望, 钟禹, 等. 环氧树脂高频松弛的交流电导与双极性方波击穿特性[J]. 电工技术学报, 2024, 39(4): 1159-1171.
Jiang Qihang, Wang Weiwang, Zhong Yu, et al.AC conductivity with high frequency relaxation and breakdown characteristics of epoxy resin under bipolar square wave voltage[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1159-1171.
[6] Yao Tong, Chen Ke, Shao Tao, et al.Nano-BN encapsulated micro-AlN as fillers for epoxy composites with high thermal conductivity and sufficient dielectric breakdown strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 528-534.
[7] Wang Zhengdong, Meng Guodong, Wang Liangliang, et al.Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets[J]. Scientific Reports, 2021, 11: 2495.
[8] 刘东明, 李学宝, 顼佳宇, 等. 高压SiC器件封装用有机硅弹性体高温宽频介电特性分析[J]. 电工技术学报, 2021, 36(12): 2548-2559.
Liu Dongming, Li Xuebao, Xu Jiayu, et al.Analysis of high temperature wide band dielectric properties of organic silicone elastomer for high voltage SiC device packaging[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2548-2559.
[9] 顼佳宇, 李学宝, 崔翔, 等. 高压大功率IGBT器件封装用有机硅凝胶的制备工艺及耐电性[J]. 电工技术学报, 2021, 36(2): 352-361.
Xu Jiayu, Li Xuebao, Cui Xiang, et al.Preparation process and breakdown properties of silicone gel used for the encapsulation of IGBT power modules[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 352-361.
[10] Guo Huilong, Lu Mangeng, Liang Liyan, et al.Liquid crystalline epoxies with lateral substituents showing a low dielectric constant and high thermal conductivity[J]. Journal of Electronic Materials, 2017, 46(2): 982-991.
[11] Wang Liangliang, Yang Chenxi, Wang Xinyue, et al.Advances in polymers and composite dielectrics for thermal transport and high-temperature applications[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107320.
[12] 王蕴, 周文英, 曹丹, 等. 本征导热液晶环氧及其复合材料的研究进展[J]. 复合材料学报, 2022, 39(5): 2060-2072.
Wang Yun, Zhou Wenying, Cao Dan, et al.Progress in intrinsically thermal conductive liquid crystalline epoxy and composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2060-2072.
[13] 王争东, 曹晓龙, 杨淦秋, 等. 高压大功率IGBT用液晶环氧性能研究(一):热导率与耐热性能[J/OL]. 电工技术学报, 2024: 1-12. DOI:10.19595/j.cnki.1000-6753.tces.232017.
Wang Zhengdong, Cao Xiaolong, Yang Ganqiu, et al.Research on properties of liquid crystalline epoxy for high-voltage and large-power IGBT (part 1): thermal conductivity and heat resistance performance[J/OL]. Transactions of China Electrotechnical Society, 2024: 1-12. DOI:10.19595/j.cnki.1000-6753.tces.232017.
[14] Guo Huilong, Zheng Jian, Gan Jianqun, et al.Relationship between crosslinking structure and low dielectric constant of hydrophobic epoxies based on substituted biphenyl mesogenic units[J]. RSC Advances, 2015, 5(107): 88014-88020.
[15] 龙云峰, 黄正勇, 胡清华, 等. 高性能液晶环氧树脂纤维薄膜[J]. 绝缘材料, 2022, 55(6): 22-27.
Long Yunfeng, Huang Zhengyong, Hu Qinghua, et al.High-performance liquid crystal epoxy resin fiber film[J]. Insulating Materials, 2022, 55(6): 22-27.
[16] 张磊, 陈玥, 孙文杰, 等. 基于击穿增强的全有机复合薄膜储能提升策略研究进展[J]. 高电压技术, 2023, 49(3): 1081-1094.
Zhang Lei, Chen Yue, Sun Wenjie, et al.Research progress in all-organic composite film energy storage enhancement strategies based on breakdown enhancement[J]. High Voltage Engineering, 2023, 49(3): 1081-1094.
[17] 成永红, 孟国栋, 董承业. 微纳尺度电气击穿特性和放电规律研究综述[J]. 电工技术学报, 2017, 32(2): 13-23.
Cheng Yonghong, Meng Guodong, Dong Chengye.Review on the breakdown characteristics and discharge behaviors at the micro & nano scale[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 13-23.
[18] Zhou Liwei, Wang Xuan, Zhang Yongqi, et al.An experimental study of the crystallinity of different density polyethylenes on the breakdown characteristics and the conductance mechanism transformation under high electric field[J]. Materials, 2019, 12(17): 2657.
[19] Li Dawei, Zhou Liwei, Wang Xuan, et al.Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property[J]. Materials, 2019, 12(11): 1746.
[20] Hrabalova M, Gregorova A, Wimmer R, et al.Effect of wood flour loading and thermal annealing on viscoelastic properties of poly (lactic acid) composite films[J]. Journal of Applied Polymer Science, 2010, 118(3): 1534-1540.
[21] Lee J Y, Jang J.Anisotropically ordered liquid crystalline epoxy network on carbon fiber surface[J]. Polymer Bulletin, 2007, 59(2): 261-268.
[22] Su Jingang, Du Boxue, Han Tao, et al.Nanoscale-trap-modulated electrical degradation in polymer dielectric composites using antioxidants as voltage stabilizers[J]. Composites Part B: Engineering, 2019, 178: 107434.
[23] 秦毅. 环氧树脂基纳米复合绝缘材料的耐电压击穿性能研究[D]. 合肥: 中国科学技术大学, 2021.
Qin Yi.Study on voltage breakdown resistance of epoxy resin-based nanocomposites insulating material[D]. Hefei: University of Science and Technology of China, 2021.
[24] Wei Yanhui, Yang Jingjing, Li Guochang, et al.Influence of molecular chain side group on the electrical properties of silicone rubber and mechanism analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(4): 1465-1473.
[25] 郭睿, 朱伟林, 于金旭, 等. SiO2纳米改性对PE击穿场强影响的模拟分析[J]. 光纤与电缆及其应用技术, 2020(3): 6-9, 31.
Guo Rui, Zhu Weilin, Yu Jinxu, et al.Simulation analysis of the effect of nano-SiO2 modification on the breakdown field strength of PE[J]. Optical Fiber & Electric Cable and Their Applications, 2020(3): 6-9, 31.
[26] 郭睿. 聚乙烯/二氧化硅纳米复合材料微观结构与电学性能仿真[D]. 哈尔滨: 哈尔滨理工大学, 2019.
Guo Rui.Simulation of morphology and electrical properties of polyethylene/silicondioxide nano-composite[D]. Harbin: Harbin University of Science andTechnology, 2019.
[27] 陈小林, 成永红, 谢小军, 等. XLPE绝缘电老化中局放特性试验研究[J]. 高电压技术, 2006, 32(4): 22-24.
Chen Xiaolin, Cheng Yonghong, Xie Xiaojun, et al.Experimental study on partial discharge in XLPE insulation during electrical aging[J]. High Voltage Engineering, 2006, 32(4): 22-24.
[28] Wang Yalin, Wu Jiandong, Yin Yi.A modified thermally stimulated current analysis method for direct determination of trap energy distribution[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 3138-3143.
[29] Jilani W, Mzabi N, Fourati N, et al.Effects of curing agent on conductivity, structural and dielectric properties of an epoxy polymer[J]. Polymer, 2015, 79: 73-81.
[30] 程子霞, 邢威威, 张云霄, 等. 纳米MgO/环氧树脂复合材料的陷阱特性及对电树枝特性的影响研究[J]. 电工技术学报, 2022, 37(21): 5562-5569.
Cheng Zixia, Xing Weiwei, Zhang Yunxiao, et al.Study on trap properties of nano-MgO/epoxy resin composites and its influence on electrical tree properties[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5562-5569.
[31] Li Shengtao, Xie Dongri, Qu Guanghao, et al.Tailoring interfacial compatibility and electrical breakdown properties in polypropylene based composites by surface functionalized POSS[J]. Applied Surface Science, 2019, 478: 451-458.
[32] 孙文杰, 张磊, 李天宇, 等. 基于动态受阻脲键氢化环氧树脂的介电性能与可修复性能[J]. 高电压技术, 2022, 48(7): 2668-2676.
Sun Wenjie, Zhang Lei, Li Tianyu, et al.Dielectric and repairable properties of hydrogenated epoxy resin based on dynamic hindered urea bonds[J]. High Voltage Engineering, 2022, 48(7): 2668-2676. |