Research on Properties of Liquid Crystalline Epoxy for High-Voltage and Large-Power IGBT (Part 1 ): Thermal Conductivity and Heat Resistance Performance
Wang Zhengdong, Cao Xiaolong, Yang Ganqiu, Luo Meng, Zhou Yuanhang
School of Mechanical and Electrical Engineering Xi' an University of Architecture and Technology Xi' an 710055 China
Abstract:With the increasingly widespread application of high-voltage and large-power insulated gate bipolar transistors (IGBT) and the increasingly complex application environment, stricter requirements have been put forward for its insulation packaging materials. The thermal conductivity and electrical insulation properties of traditional epoxy resins and silicone materials currently used in IGBT are difficult to meet the requirements of future power devices, and there is an urgent need to develop a new type of encapsulation material with high thermal conductivity, outstanding thermal resistance and electrical insulation properties. This study attempts to simultaneously enhance the electrical insulating and thermal properties of materials by constructing ordered self-assembly liquid crystalline domains in epoxy materials. The influence of liquid crystalline domains on material properties was studied by blending liquid crystalline epoxy with traditional epoxy. A biphenyl epoxy and liquid crystalline curing agent were innovatively proposed to prepare a novel highly ordered liquid crystalline epoxy (named TMB-5+) based on dual crystalline units. Because of the length limitation of research article in this journal, our work referring to electrical insulating and thermal properties will be reported via two papers. The current first paper mainly investigates the related heat resistance and thermal conductivity properties of the prepared liquid crystalline epoxy. The ordered structures formed by the π-π stacking of biphenyl liquid crystalline units result in a typical spherical liquid crystalline morphology in the epoxy film. As the content of biphenyl epoxy increases, the quantity of liquid crystalline domains also increases. The highly ordered liquid crystalline domains and numerous rigid structures inside the material can theoretically achieve a synergistic improvement in thermal conductivity and heat resistance. Firstly, the heat resistance of liquid crystalline epoxy films was studied. The study found that the TMB-5+ sample exhibited a ultrahigh glass transition temperature (Tg), reaching 247℃, which was 76.4% higher than that of traditional epoxy. By molecular dynamics simulation, the theoretical Tg of the novel liquid crystalline epoxy can reach (310±20)℃, and high Tg allows the material to maintain stable physical and chemical properties at high temperatures. Based on the mean square displacement (MSD) simulation, it was found that the motion ability of molecular chain segments in the liquid crystalline epoxy cross-linking model is relatively weaker, indicating stronger thermal stability of the material. Secondly, thermal conductivity of the liquid crystalline epoxy film was studied, and the new epoxy with dual liquid crystalline units showed an improved thermal conductivity of 0.351 W/(m·K), which was 64.0% bigger than taht of traditional bisphenol A epoxy resin. At the same time, the liquid crystalline epoxy showed an improved thermal conductivity at high temperatures. The highly ordered orientation structure in liquid crystalline polymers becomes an effective pathway for phonon conduction, where phonon scattering hardly occurs. In addition, the thermal conductivity of the liquid crystalline epoxy crosslinking model was simulated using the resistance to disturbance non-equilibrium molecular dynamics (RNEMD) method, and the simulated values were consistent with the experimental results.
王争东, 曹晓龙, 杨淦秋, 罗盟, 周远航. 高压大功率IGBT用液晶环氧性能研究(一):热导率与耐热特性[J]. 电工技术学报, 2025, 40(1): 273-284.
Wang Zhengdong, Cao Xiaolong, Yang Ganqiu, Luo Meng, Zhou Yuanhang. Research on Properties of Liquid Crystalline Epoxy for High-Voltage and Large-Power IGBT (Part 1 ): Thermal Conductivity and Heat Resistance Performance. Transactions of China Electrotechnical Society, 2025, 40(1): 273-284.
[1] 罗皓泽, 高洪艺, 朱春林, 等. 电动汽车IGBT芯片技术综述和展望[J]. 中国电机工程学报, 2020, 40(18): 5718-5730. Luo Haoze, Gao Hongyi, Zhu Chunlin, et al.Review and prospect of IGBT chip technologies for electric vehicles[J]. Proceedings of the CSEE, 2020, 40(18): 5718-5730. [2] 周文鹏, 曾嵘, 赵彪, 等. 大容量全控型压接式IGBT和IGCT器件对比分析:原理、结构、特性和应用[J]. 中国电机工程学报, 2022, 42(8): 2940-2957. Zhou Wenpeng, Zeng Rong, Zhao Biao, et al.Comparative analysis of large-capacity fully-controlled press-pack IGBT and IGCT: principle, structure, characteristics and application[J]. Proceedings of the CSEE, 2022, 42(8): 2940-2957. [3] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7): 1760-1771. Tang Guangfu, Pang Hui, He Zhiyuan.R & D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2016, 36(7): 1760-1771. [4] Iwamuro N, Laska T.IGBT history, state-of-the-art, and future prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 741-752. [5] Choi U M, Blaabjerg F, Lee K B.Study and handling methods of power IGBT module failures in power electronic converter systems[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2517-2533. [6] 王来利, 赵成, 张彤宇, 等. 碳化硅功率模块封装技术综述[J]. 电工技术学报, 2023, 38(18): 4947-4962. Wang Laili, Zhao Cheng, Zhang Tongyu, et al.Review of packaging technology for silicon carbide power modules[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4947-4962. [7] 李思庚, 李庆民, 王伟, 等. 电热协同老化应力下环氧树脂复合材料沿面闪络特性与数值模拟[J/OL]. 电工技术学报, 1-12[2024-11-22]. https://doi. org/10.19595/j.cnki.1000-6753.tces.240904. Li Sigeng, Li Qingmi, Wang Wei, et al. Characterization and numerical simulation of epoxy resin composites flashed along the surface under electro-thermal co-aging Stresses[J/OL]. Transactions of China Electrotechnical Society, 1-12.[2024-11-22]. https://doi. org/10.19595/j.cnki.1000-6753.tces.240904. [8] 杜伯学, 姚航, 梁虎成, 等. 时变温差工况下直流GIL/GIS盆式绝缘子动态电场畸变抑制[J]. 电工技术学报, 2024, 39(9): 2851-2859. Du Boxue, Yao Hang, Liang Hucheng, et al.Electric field relaxation of basin spacer under variable tem-perature gradient in DC-GIL/GIS[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2851-2859. [9] 王争东, 罗盟, 成永红. 高压大功率IGBT失效机理和耐高温改性有机硅灌封材料研究综述[J]. 高电压技术, 2023, 49(4): 1632-1644. Wang Zhengdong, Luo Meng, Cheng Yonghong.Review of research on failure mechanism of high voltage and high power IGBT and modified silicone potting materials with high temperature resistance[J]. High Voltage Engineering, 2023, 49(4): 1632-1644. [10] Abuelnaga A, Narimani M, Bahman A S.A review on IGBT module failure modes and lifetime testing[J]. IEEE Access, 2021, 9: 9643-9663. [11] 佟辉, 臧丽坤, 徐菊. 导热绝缘材料在电力电子器件封装中的应用[J]. 绝缘材料, 2021, 54(12): 1-9. Tong Hui, Zang Likun, Xu Ju.Application of thermally conductive insulating materials in power electronics packaging[J]. Insulating Materials, 2021, 54(12): 1-9. [12] 张健, 陈锐, 陈世瑛, 等. MMC子模块设备老化机理与状态监测研究综述[J]. 高压电器, 2020, 56(1): 1-8. Zhang Jian, Chen Rui, Chen Shiying, et al.Review on aging mechanism and condition monitoring of devices in MMC sub-module[J]. High Voltage Apparatus, 2020, 56(1): 1-8. [13] 孙魄韬, 王河飞, 司马文霞, 等. 磁靶向相变微胶囊/纳米Al2O3/环氧树脂复合绝缘材料的自修复特性[J/OL]. 电工技术学报, 1-14. Sun Potao, Wang Hefei, Sima Wenxia, et al.Self-healing property of magnetic-targeted phase change microcapsules/nano-Al2O3/epoxy composite insulating materials[J/OL]. Transactions of China Electrotechnical Society, 1-14. [14] 刘云鹏, 黎馨阳, 刘贺晨, 等. 基于亚胺键的香草醛基可降解环氧树脂综合性能研究[J/OL]. 电工技术学报, 1-16[2024-08-29]. https://doi:org/10.19595/ j.cnki.1000-6753.tces.240564. Liu Yunpeng, Li Xinyang, Liu Hechen, et al. Comprehensive performance study of vanillin-based degradable epoxy resin based on imine bonding[J/OL]. Transactions of China Electrotechnical Society, 1-161-16[2024-08-29]. https://doi:org/10. 19595/j.cnki.1000-6753.tces.240564. [15] 曾亮, 齐放, 戴小平. 高分子绝缘材料在功率模块封装中的研究与应用[J]. 绝缘材料, 2021, 54(5): 1-9. Zeng Liang, Qi Fang, Dai Xiaoping.Study and application of polymer insulating material in power module packaging[J]. Insulating Materials, 2021, 54(5): 1-9. [16] Han Sensen, Chand A, Araby S, et al.Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite[J]. Nanotechnology, 2020, 31(7): 075702. [17] 李志辉, 解曾祺, 李庆民, 等. 多巴胺接枝的纳米氮化硼改性环氧树脂绝缘表面电荷高频消散特性[J]. 电工技术学报, 2023, 38(5): 1116-1128. Li Zhihui, Xie Zengqi, Li Qingmin, et al.Study on the surface charge dissipation characteristics of epoxy resin modified by dopamine grafted nano boron nitride under high frequency electric stress[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1116-1128. [18] Han Yixin, Shi Xuetao, Yang Xutong, et al.Enhanced thermal conductivities of epoxy nanocomposites via incorporating in situ fabricated hetero-structured SiC-BNNS fillers[J]. Composites Science and Technology, 2020, 187: 107944. [19] Wang Zhengdong, Zhou Yuanhang, Zhang Tong, et al.Boron nitride nanosheet @quantum-sized diamond nanocrystal complex/epoxy nanocomposites with enhancing thermal conductivity and sufficient dielectric breakdown strength[J]. Polymer Composites, 2024, 45(4): 3210-3224. [20] Wang Zhengdong, Meng Guodong, Wang Liangliang, et al.Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets[J]. Scientific Reports, 2021, 11: 2495. [21] Wang Liangliang, Yang Chenxi, Wang Xinyue, et al.Advances in polymers and composite dielectrics for thermal transport and high-temperature applications[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107320. [22] 王蕴, 周文英, 曹丹, 等. 本征导热液晶环氧及其复合材料的研究进展[J]. 复合材料学报, 2022, 39(5): 2060-2072. Wang Yun, Zhou Wenying, Cao Dan, et al.Progress in intrinsically thermal conductive liquid crystalline epoxy and composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2060-2072. [23] Ruan Kunpeng, Zhong Xiao, Shi Xuetao, et al.Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review[J]. Materials Today Physics, 2021, 20: 100456. [24] 李栓, 张宝艳, 张思, 等. 酚醛环氧树脂改性环氧胶粘剂的耐热性能研究[J]. 化工新型材料, 2023, 51(1): 272-275, 280. Li Shuan, Zhang Baoyan, Zhang Si, et al.Study on heat resistance of epoxy adhesive modified by phenolic epoxy resin[J]. New Chemical Materials, 2023, 51(1): 272-275, 280. [25] Harada M, Morioka D, Ochi M.Thermal and mechanical properties of tetra-functional mesogenic type epoxy resin cured with aromatic amine[J]. Journal of Applied Polymer Science, 2018, 135(16): 46181. [26] Yang Xutong, Zhong Xiao, Zhang Junliang, et al.Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance[J]. Journal of Materials Science & Technology, 2021, 68: 209-215. [27] 张春玲, 那辉, 刘晨光, 等. 含有联苯结构二缩水甘油醚型环氧树脂的合成与表征[J]. 热固性树脂, 2002, 17(1): 1-3. Zhang Chunling, Na Hui, Liu Chenguang, et al.Synthesis and demonstration of diglycidyl ether epoxy resin containing biphenyl[J]. Thermoseting Resin, 2002, 17(1): 1-3. [28] Li Yuzhan, Badrinarayanan P, Kessler M R.Liquid crystalline epoxy resin based on biphenyl mesogen: thermal characterization[J]. Polymer, 2013, 54(12): 3017-3025. [29] Guo Huilong, Lu Mangeng, Liang Liyan, et al.Liquid crystalline epoxies with lateral substituents showing a low dielectric constant and high thermal conductivity[J]. Journal of Electronic Materials, 2017, 46(2): 982-991. [30] Trinh T E, Ku K, Yeo H.Reprocessable and chemically recyclable hard vitrimers based on liquid-crystalline epoxides[J]. Advanced Materials, 2023, 35(11): e2209912. [31] 思代春. 高聚物玻璃化转变温度和热膨胀系数标准物质的研制[D]. 北京: 中国石油大学(北京), 2020. Si Daichun.Development of standard materials for glass transitiontemperature and thermal expansion coefficient of polymer[D]. Beijing: China Unversity of Petoleum, 2020. [32] 曲家利, 周丽霞, 李齐方. 分子动力学模拟结合实验精确预测聚苯乙烯玻璃化转变温度的研究[J]. 高分子通报, 2020(10): 66-72. Qu Jiali, Zhou Lixia, Li Qifang.Accuracy prediction on glass transition temperature of polystyrene with molecular dynamics simulation and experimental studies[J]. Polymer Bulletin, 2020(10): 66-72. [33] 谢士杰. 聚合物玻璃化转变行为的分子动力学模拟研究[D]. 长春: 吉林大学, 2015. Xie Shijie.Molecular dynamics simulation study on the glass transition behavior of polymers[D]. Changchun: Jilin University, 2015. [34] 王兵, 任伟伟, 王雯霏. 静压力下粘弹性阻尼材料自由体积分数的分子模拟研究[J]. 材料开发与应用, 2016, 31(6): 1-5. Wang Bing, Ren Weiwei, Wang Wenfei.Molecular simulation analysis for the influence of hydrostatic pressure on the free volume fraction of viscoelastic damping materials[J]. Development and Application of Materials, 2016, 31(6): 1-5. [35] 刘俊红. 高分子聚合物微观动力学性质的分子动力学模拟研究[D]. 长春: 长春工业大学, 2022. Liu Junhong.Molecular dynamics simulation of microscopic dynamic properties of polymer[D]. Chang-chun: Changchun University of Technology, 2022. [36] Burger N, Laachachi A, Ferriol M, et al.Review of thermal conductivity in composites: mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28. [37] 谢志鹏. 端羧基液体丁腈橡胶与环糊精改性环氧树脂的性能研究[D]. 天津: 天津大学, 2020. Xie Zhipeng.Study on properties of epoxy resin modified by carboxyl terminated liquid nitrile rubber and cyclodextrin[D]. Tianjin: Tianjin University, 2020.