电工技术学报  2025, Vol. 40 Issue (1): 273-284    DOI: 10.19595/j.cnki.1000-6753.tces.232017
高电压与放电 |
高压大功率IGBT用液晶环氧性能研究(一):热导率与耐热特性
王争东, 曹晓龙, 杨淦秋, 罗盟, 周远航
西安建筑科技大学机电工程学院 西安 710055
Research on Properties of Liquid Crystalline Epoxy for High-Voltage and Large-Power IGBT (Part 1 ): Thermal Conductivity and Heat Resistance Performance
Wang Zhengdong, Cao Xiaolong, Yang Ganqiu, Luo Meng, Zhou Yuanhang
School of Mechanical and Electrical Engineering Xi' an University of Architecture and Technology Xi' an 710055 China
全文: PDF (15935 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着绝缘栅双极型晶体管(IGBT)在工业应用上向高电压、大功率方向发展,对其散热、耐热、绝缘等性能提出了更高的要求,亟须研制高性能的绝缘灌封材料。该文提出利用联苯型环氧单体与联苯胺固化剂双液晶分子构筑液晶畴,着重调控材料热学及电气性能。系列论文(一)研究了其相关热性能,研究表明通过利用液晶联苯胺固化剂与联苯液晶环氧构建具有π-π堆砌液晶畴及高交联密度网络结构的固化物,其玻璃化转变温度Tg可达247℃,与传统双酚A型环氧的Tg相比提高了76.4%;热导率提升至0.351 W/(m·K),相对于双酚A型环氧提高了64.0%。此外,通过分子动力学模拟对交联聚合物的自由体积、Tg、热导率等微观参数及宏观性能进行了机理分析。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王争东
曹晓龙
杨淦秋
罗盟
周远航
关键词 绝缘灌封材料联苯液晶环氧联苯液晶固化剂热导率耐热性能    
Abstract:With the increasingly widespread application of high-voltage and large-power insulated gate bipolar transistors (IGBT) and the increasingly complex application environment, stricter requirements have been put forward for its insulation packaging materials. The thermal conductivity and electrical insulation properties of traditional epoxy resins and silicone materials currently used in IGBT are difficult to meet the requirements of future power devices, and there is an urgent need to develop a new type of encapsulation material with high thermal conductivity, outstanding thermal resistance and electrical insulation properties. This study attempts to simultaneously enhance the electrical insulating and thermal properties of materials by constructing ordered self-assembly liquid crystalline domains in epoxy materials. The influence of liquid crystalline domains on material properties was studied by blending liquid crystalline epoxy with traditional epoxy. A biphenyl epoxy and liquid crystalline curing agent were innovatively proposed to prepare a novel highly ordered liquid crystalline epoxy (named TMB-5+) based on dual crystalline units. Because of the length limitation of research article in this journal, our work referring to electrical insulating and thermal properties will be reported via two papers. The current first paper mainly investigates the related heat resistance and thermal conductivity properties of the prepared liquid crystalline epoxy.
The ordered structures formed by the π-π stacking of biphenyl liquid crystalline units result in a typical spherical liquid crystalline morphology in the epoxy film. As the content of biphenyl epoxy increases, the quantity of liquid crystalline domains also increases. The highly ordered liquid crystalline domains and numerous rigid structures inside the material can theoretically achieve a synergistic improvement in thermal conductivity and heat resistance. Firstly, the heat resistance of liquid crystalline epoxy films was studied. The study found that the TMB-5+ sample exhibited a ultrahigh glass transition temperature (Tg), reaching 247℃, which was 76.4% higher than that of traditional epoxy. By molecular dynamics simulation, the theoretical Tg of the novel liquid crystalline epoxy can reach (310±20)℃, and high Tg allows the material to maintain stable physical and chemical properties at high temperatures. Based on the mean square displacement (MSD) simulation, it was found that the motion ability of molecular chain segments in the liquid crystalline epoxy cross-linking model is relatively weaker, indicating stronger thermal stability of the material. Secondly, thermal conductivity of the liquid crystalline epoxy film was studied, and the new epoxy with dual liquid crystalline units showed an improved thermal conductivity of 0.351 W/(m·K), which was 64.0% bigger than taht of traditional bisphenol A epoxy resin. At the same time, the liquid crystalline epoxy showed an improved thermal conductivity at high temperatures. The highly ordered orientation structure in liquid crystalline polymers becomes an effective pathway for phonon conduction, where phonon scattering hardly occurs. In addition, the thermal conductivity of the liquid crystalline epoxy crosslinking model was simulated using the resistance to disturbance non-equilibrium molecular dynamics (RNEMD) method, and the simulated values were consistent with the experimental results.
Key wordsInsulating potting material    biphenyl liquid crystalline epoxy    biphenyl liquid crystalline curing agent    thermal conductivity    thermal resistant performance   
收稿日期: 2023-12-04     
PACS: TM211  
基金资助:国家自然科学基金青年项目(52307028)、电力设备电气绝缘国家重点实验室开放课题(EIPE22210)、陕西省自然科学基金青年项目(2022JQ-300)、陕西省产学研协同创新计划项目(2023YFBT-45-02)和陕西省教育厅服务地方专项产业化培育重点项目(23JC042)资助
通讯作者: 王争东 男,1988年生,副教授,硕士生导师,研究方向为新型电工材料合成与储能技术等。E-mail:wangzhengdong@xauat.edu.cn   
作者简介: 曹晓龙 男,2000年生,硕士研究生,研究方向为功率器件用新型环氧材料。E-mail:caoxiaolong@xauat.edu.cn
引用本文:   
王争东, 曹晓龙, 杨淦秋, 罗盟, 周远航. 高压大功率IGBT用液晶环氧性能研究(一):热导率与耐热特性[J]. 电工技术学报, 2025, 40(1): 273-284. Wang Zhengdong, Cao Xiaolong, Yang Ganqiu, Luo Meng, Zhou Yuanhang. Research on Properties of Liquid Crystalline Epoxy for High-Voltage and Large-Power IGBT (Part 1 ): Thermal Conductivity and Heat Resistance Performance. Transactions of China Electrotechnical Society, 2025, 40(1): 273-284.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.232017          https://dgjsxb.ces-transaction.com/CN/Y2025/V40/I1/273