[1] 李俊杰, 梅云辉, 梁玉, 等. 功率器件高电压封装用复合电介质灌封材料研究[J]. 电工技术学报, 2022, 37(3): 786-792.
Li Junjie, Mei Yunhui, Liang Yu, et al.Study on composite dielectric encapsulation materials for high voltage power device packaging[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 786-792.
[2] 罗皓泽, 高洪艺, 朱春林, 等. 电动汽车IGBT芯片技术综述和展望[J]. 中国电机工程学报, 2020, 40(18): 5718-5730.
Luo Haoze, Gao Hongyi, Zhu Chunlin, et al.Review and prospect of IGBT chip technologies for electric vehicles[J]. Proceedings of the CSEE, 2020, 40(18): 5718-5730.
[3] 周文鹏, 曾嵘, 赵彪, 等. 大容量全控型压接式IGBT和IGCT器件对比分析:原理、结构、特性和应用[J]. 中国电机工程学报, 2022, 42(8): 2940-2957.
Zhou Wenpeng, Zeng Rong, Zhao Biao, et al.Comparative analysis of large-capacity fully-controlled press-pack IGBT and IGCT: principle, structure, characteristics and application[J]. Proceedings of the CSEE, 2022, 42(8): 2940-2957.
[4] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7): 1760-1771.
Tang Guangfu, Pang Hui, He Zhiyuan.R & D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2016, 36(7): 1760-1771.
[5] Iwamuro N, Laska T.IGBT history, state-of-the-art, and future prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 741-752.
[6] Choi U M, Blaabjerg F, Lee K B.Study and handling methods of power IGBT module failures in power electronic converter systems[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2517-2533.
[7] 王来利, 赵成, 张彤宇, 等. 碳化硅功率模块封装技术综述[J]. 电工技术学报, 2023, 38(18): 4947-4962.
Wang Laili, Zhao Cheng, Zhang Tongyu, et al.Review of packaging technology for silicon carbide power modules[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4947-4962.
[8] 王争东, 罗盟, 成永红. 高压大功率IGBT失效机理和耐高温改性有机硅灌封材料研究综述[J]. 高电压技术, 2023, 49(4): 1632-1644.
Wang Zhengdong, Luo Meng, Cheng Yonghong.Review of research on failure mechanism of high voltage and high power IGBT and modified silicone potting materials with high temperature resistance[J]. High Voltage Engineering, 2023, 49(4): 1632-1644.
[9] Abuelnaga A, Narimani M, Bahman A S.A review on IGBT module failure modes and lifetime testing[J]. IEEE Access, 2021, 9: 9643-9663.
[10] 佟辉, 臧丽坤, 徐菊. 导热绝缘材料在电力电子器件封装中的应用[J]. 绝缘材料, 2021, 54(12): 1-9.
Tong Hui, Zang Likun, Xu Ju.Application of thermally conductive insulating materials in power electronics packaging[J]. Insulating Materials, 2021, 54(12): 1-9.
[11] 张健, 陈锐, 陈世瑛, 等. MMC子模块设备老化机理与状态监测研究综述[J]. 高压电器, 2020, 56(1): 1-8.
Zhang Jian, Chen Rui, Chen Shiying, et al.Review on aging mechanism and condition monitoring of devices in MMC sub-module[J]. High Voltage Apparatus, 2020, 56(1): 1-8.
[12] 刘贺晨, 郭展鹏, 李岩, 等. 衣康酸基环氧树脂和双酚A环氧树脂性能对比研究[J]. 电工技术学报, 2022, 37(9): 2366-2376.
Liu Hechen, Guo Zhanpeng, Li Yan, et al.Comparative study on the performance of itaconic acid based epoxy resin and bisphenol A epoxy resin[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2366-2376.
[13] 曾亮, 齐放, 戴小平. 高分子绝缘材料在功率模块封装中的研究与应用[J]. 绝缘材料, 2021, 54(5): 1-9.
Zeng Liang, Qi Fang, Dai Xiaoping.Study and application of polymer insulating material in power module packaging[J]. Insulating Materials, 2021, 54(5): 1-9.
[14] Han Sensen, Chand A, Araby S, et al.Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite[J]. Nanotechnology, 2020, 31(7): 075702.
[15] Han Yixin, Shi Xuetao, Yang Xutong, et al.Enhanced thermal conductivities of epoxy nanocomposites via incorporating in situ fabricated hetero-structured SiC-BNNS fillers[J]. Composites Science and Technology, 2020, 187: 107944.
[16] 米彦, 葛欣, 刘露露, 等. 微秒脉冲电场强度对BNNSs取向程度和环氧树脂复合材料热导率的影响[J]. 电工技术学报, 2022, 37(6): 1533-1541.
Mi Yan, Ge Xin, Liu Lulu, et al.Effect of microsecond pulsed electric field strength on the BNNSs orientation degree and the thermal conductivity of epoxy resin composites[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1533-1541.
[17] Wang Zhengdong, Zhou Yuanhang, Zhang Tong, et al.Boron nitride nanosheet @quantum-sized diamond nanocrystal complex/epoxy nanocomposites with enhancing thermal conductivity and sufficient dielectric breakdown strength[J]. Polymer Composites, 2024, 45(4): 3210-3224.
[18] Wang Zhengdong, Meng Guodong, Wang Liangliang, et al.Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets[J]. Scientific Reports, 2021, 11: 2495.
[19] Wang Liangliang, Yang Chenxi, Wang Xinyue, et al.Advances in polymers and composite dielectrics for thermal transport and high-temperature applications[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107320.
[20] 王蕴, 周文英, 曹丹, 等. 本征导热液晶环氧及其复合材料的研究进展[J]. 复合材料学报, 2022, 39(5): 2060-2072.
Wang Yun, Zhou Wenying, Cao Dan, et al.Progress in intrinsically thermal conductive liquid crystalline epoxy and composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2060-2072.
[21] Ruan Kunpeng, Zhong Xiao, Shi Xuetao, et al.Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review[J]. Materials Today Physics, 2021, 20: 100456.
[22] 李栓, 张宝艳, 张思, 等. 酚醛环氧树脂改性环氧胶粘剂的耐热性能研究[J]. 化工新型材料, 2023, 51(1): 272-275, 280.
Li Shuan, Zhang Baoyan, Zhang Si, et al.Study on heat resistance of epoxy adhesive modified by phenolic epoxy resin[J]. New Chemical Materials, 2023, 51(1): 272-275, 280.
[23] Harada M, Morioka D, Ochi M.Thermal and mechanical properties of tetra-functional mesogenic type epoxy resin cured with aromatic amine[J]. Journal of Applied Polymer Science, 2018, 135(16): 46181.
[24] Yang Xutong, Zhong Xiao, Zhang Junliang, et al.Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance[J]. Journal of Materials Science & Technology, 2021, 68: 209-215.
[25] 张春玲, 那辉, 刘晨光, 等. 含有联苯结构二缩水甘油醚型环氧树脂的合成与表征[J]. 热固性树脂, 2002, 17(1): 1-3.
Zhang Chunling, Na Hui, Liu Chenguang, et al.Synthesis and demonstration of diglycidyl ether epoxy resin containing biphenyl[J]. Thermoseting Resin, 2002, 17(1): 1-3.
[26] Li Yuzhan, Badrinarayanan P, Kessler M R.Liquid crystalline epoxy resin based on biphenyl mesogen: thermal characterization[J]. Polymer, 2013, 54(12): 3017-3025.
[27] Guo Huilong, Lu Mangeng, Liang Liyan, et al.Liquid crystalline epoxies with lateral substituents showing a low dielectric constant and high thermal conductivity[J]. Journal of Electronic Materials, 2017, 46(2): 982-991.
[28] Trinh T E, Ku K, Yeo H.Reprocessable and chemically recyclable hard vitrimers based on liquid-crystalline epoxides[J]. Advanced Materials, 2023, 35(11): e2209912.
[29] 思代春. 高聚物玻璃化转变温度和热膨胀系数标准物质的研制[D]. 北京: 中国石油大学(北京), 2020.
Si Daichun.Development of standard materials for glass transitiontemperature and thermal expansion coefficient of polymer[D]. Beijing: China Unversity of Petoleum, 2020.
[30] 曲家利, 周丽霞, 李齐方. 分子动力学模拟结合实验精确预测聚苯乙烯玻璃化转变温度的研究[J]. 高分子通报, 2020(10): 66-72.
Qu Jiali, Zhou Lixia, Li Qifang.Accuracy prediction on glass transition temperature of polystyrene with molecular dynamics simulation and experimental studies[J]. Polymer Bulletin, 2020(10): 66-72.
[31] 谢士杰. 聚合物玻璃化转变行为的分子动力学模拟研究[D]. 长春: 吉林大学, 2015.
Xie Shijie.Molecular dynamics simulation study on the glass transition behavior of polymers[D]. Changchun: Jilin University, 2015.
[32] 王兵, 任伟伟, 王雯霏. 静压力下粘弹性阻尼材料自由体积分数的分子模拟研究[J]. 材料开发与应用, 2016, 31(6): 1-5.
Wang Bing, Ren Weiwei, Wang Wenfei.Molecular simulation analysis for the influence of hydrostatic pressure on the free volume fraction of viscoelastic damping materials[J]. Development and Application of Materials, 2016, 31(6): 1-5.
[33] 刘俊红. 高分子聚合物微观动力学性质的分子动力学模拟研究[D]. 长春: 长春工业大学, 2022.
Liu Junhong.Molecular dynamics simulation of microscopic dynamic properties of polymer[D]. Changchun: Changchun University of Technology, 2022.
[34] Burger N, Laachachi A, Ferriol M, et al.Review of thermal conductivity in composites: mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28.
[35] 谢志鹏. 端羧基液体丁腈橡胶与环糊精改性环氧树脂的性能研究[D]. 天津: 天津大学, 2020.
Xie Zhipeng.Study on properties of epoxy resin modified by carboxyl terminated liquid nitrile rubber and cyclodextrin[D]. Tianjin: Tianjin University, 2020. |