Parameter Designing in Power Supply System with Bidirectional Converter Devices as Only Converters Based on Enhanced Brute Force Algorithm
Zhang Jian1, Liu Wei1, Pan Weiguo2, Zhang Hao1, Xie Wei3, Ge Zhou3
1. School of Electrical Engineering Southwest Jiaotong University Chengdu 611756 China; 2. Beijing National Railway Communication Signal Research And Design Institute Group Co. Ltd Beijing 100071 China; 3. Shenzhen Metro Construction Group Co. Ltd Shenzhen 518026 China
Abstract:Aiming at the power flow calculation and parameter design in the power supply system (the bidirectional converter device is the only converter), this paper establishes a power flow calculation model of urban rail power supply system considering the capacity constraint of the bidirectional converter device. According to the power flow calculation algorithm, a parameter design strategy of the bidirectional converter device based on the improved brute force search algorithm is proposed, which considers the splitting of each traction substation (TS). In the iteration, to obtain the limit solution set, the capacity, droop rate and no-load voltage are divided into three layers, and the results are based on the simulation without considering the capacity constraint of the bidirectional converter device. The actual case is studied. After considering the capacity constraint of the bidirectional converter device, the peak output power of TS is controlled, and the adjacent TSs can provide power support. The search number of the proposed strategy is 1.63% of the traditional brute force algorithm. In the example case, the train is 6B marshalling with the maximum speed of 80km/h, and the minimum capacity of the bidirectional current converter in the limit solution set is 7MW.
张戬, 刘炜, 潘卫国, 张浩, 谢伟, 葛洲. 基于改进暴力搜索算法的全双向变流供电系统参数设计[J]. 电工技术学报, 2021, 36(23): 4896-4904.
Zhang Jian, Liu Wei, Pan Weiguo, Zhang Hao, Xie Wei, Ge Zhou. Parameter Designing in Power Supply System with Bidirectional Converter Devices as Only Converters Based on Enhanced Brute Force Algorithm. Transactions of China Electrotechnical Society, 2021, 36(23): 4896-4904.
[1] 中国城市轨道交通智慧城轨发展纲要[J]. 城市轨道交通, 2020(4): 8-23. Development outline of smart urban rail in China[J]. China Metros, 2020(4): 8-23. [2] 沈茂盛, 刘志刚, 张钢, 等. 采用三电平电压型PWM整流器的地铁牵引供电系统[J]. 电工技术学报, 2007, 22(7): 74-77. Shen Maosheng, Liu Zhigang, Zhang Gang, et al.Traction power supply system in subway adopting three-level voltage source PWM rectifier[J]. Transa-ctions of China Electrotechnical Society, 2007, 22(7): 74-77. [3] 卢西伟, 刘志刚, 张钢, 等. 基于电压型PWM整流器的新型轻轨牵引供电系统[J]. 电工技术学报, 2007, 22(8): 68-72. Lu Xiwei, Liu Zhigang, Zhang Gang, et al.Research on novel light-rail traction power supply system based on voltage source PWM rectifier[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 68-72. [4] 成吉安. 城市轨道交通双向变流器牵引供电技术的应用[J]. 城市轨道交通研究, 2019, 22(12): 110-113. Cheng Ji'an.Application of traction power supply technology with bidirectional converter for urban rail transit[J]. Urban Mass Transit, 2019, 22(12): 110-113. [5] 杨树松, 李辉, 朱纪法. 双向变流器应用于城市轨道交通供电系统的功能性验证[J]. 城市轨道交通研究, 2020, 23(1): 187-190. Yang Shusong, Li Hui, Zhu Jifa.Functional veri- fication of bidirectional converter applied in urban rail transit power supply system[J]. Urban Mass Transit, 2020, 23(1): 187-190. [6] 刘炜, 张扬鑫, 张戬, 等. 考虑牵引所多运行状态的城轨交直流供电计算[J]. 西南交通大学学报, 2020, 55(6): 1163-1170. Liu Wei, Zhang Yangxin, Zhang Jian, et al.Calculation of urban rail AC/DC power supply with traction substation in multi-operation modes[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1163-1170. [7] 刘炜, 娄颖, 张戬, 等. 计及城市轨道逆变回馈装置的交直流统一供电计算[J]. 电工技术学报, 2019, 34(20): 4381-4391. Liu Wei, Lou Ying, Zhang Jian, et al.Unified AC-DC power supply calculation taking into account urban rail inverter feedback devices[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4381-4391. [8] Zhang Gang, Tian Zhongbei, Tricoli P, et al.Inverter operating characteristics optimization for DC traction power supply systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3400-3410. [9] 刘志刚, 郝峰杰, 陈杰, 等. 城轨牵引供电系统车-地配合参数优化方法[J]. 北京交通大学学报, 2019, 43(1): 79-87. Liu Zhigang, Hao Fengjie, Chen Jie, et al.Optimal method of train-ground coordination parameters for urban traction power supply system[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 79-87. [10] Hao Fengjie, Zhang Gang, Chen Jie, et al.Optimal voltage regulation and power sharing in traction power systems with reversible converters[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2726-2735. [11] 张戬, 刘炜, 周瑞兵, 等. 基于双向变流装置的城市轨道牵引供电系统潮流计算[J]. 中国铁道科学, 2020, 41(1): 92-98. Zhang Jian, Liu Wei, Zhou Ruibing, et al.Power flow of traction power supply system for urban rail transit based on bidirectional converter device[J]. China Railway Science, 2020, 41(1): 92-98. [12] 刘炜, 吴拓剑, 禹皓元, 等. 直流牵引供电系统地面储能装置建模与仿真分析[J]. 电工技术学报, 2020, 35(19): 4207-4215. Liu Wei, Wu Tuojian, Yu Haoyuan, et al.Modeling and simulation of way-side energy storage devices in DC traction power supply system[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4207-4215. [13] 秦强强, 郭婷婷, 林飞, 等. 基于能量转移的城轨交通电池储能系统能量管理和容量配置优化[J]. 电工技术学报, 2019, 34(增刊1): 414-423. Qin Qiangqiang, Guo Tingting, Lin Fei, et al.Optimal research for energy management and configuration of battery ESS in urban rail transit based on energy transfer[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 414-423. [14] 中华人民共和国住房和城乡建设部. 地铁设计规范: GB 50157—2013[S]. 北京: 中国建筑工业出版社, 2013.