Abstract:For automatic guided vehicles with dynamic wireless power transfer (DWPT), the gap of the receiver is inevitable due to the variation of load. It can cause the system coils' parameters (self-inductances and mutual inductance) to change, further affecting the stability of the system output. In order to realize a stable output of the DWPT system when the gap of the receiver is variable, a parameter design method based on a series-series (SS) topology is proposed in this paper. An equivalent circuit model of the SS topology considering the change of coil parameters is established to analyze the influence of the compensation parameters on system output. Thus, the constraints and solution space of compensation topology parameters are determined. A parameter design method for SS topology is proposed based on particle swarm optimization algorithm to maintain stable output current and high efficiency. Finally, a 1kW prototype was built to verify the effectiveness of the proposed approach. Experimental results indicate that within the gap range (20mm~80mm), the maximum fluctuation of the designed system output current is only 3.55% when the self-inductances increase by 19.1μH and 45.22μH, respectively, and the mutual inductance increase to 2.4 times. Furthermore, the highest efficiency of the system reaches 96.52%.
陆远方, 黎祎阳, 杨斌, 陈阳, 麦瑞坤. 考虑线圈参数变化的SS型动态无线电能传输系统参数优化设计方法[J]. 电工技术学报, 2022, 37(18): 4537-4547.
Lu Yuanfang, Li Yiyang, Yang Bin, Chen Yang, Mai Ruikun. Parameter Design Method for SS Compensated Dynamic Wireless Power Transfer System Considering Coils' Parameters Variations. Transactions of China Electrotechnical Society, 2022, 37(18): 4537-4547.
[1] 赵进国, 赵晋斌, 张俊伟, 等. 无线电能传输系统中有源阻抗匹配网络断续电流模式最大效率跟踪研究[J]. 电工技术学报, 2022, 37(1): 24-35. Zhao Jinguo, Zhao Jinbin, Zhang Junwei, et al.Maximum efficiency tracking study of active impedance matching network discontinous current mode in wireless power transfer system[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(1): 24-35. [2] 王奉献, 张献, 杨庆新, 等. 基于相差调控的无线电能传输系统耦合机构结构电磁力的平抑[J]. 电工技术学报, 2022, 37(1): 141-151. Wang Fengxian, Zhang Xian, Yang Qingxin, et al.Electromagnetic force suppression of the coupling mechanism structure of WPT system based on phase difference control[J]. Transactions of China Electro- technical Society, 2022, 37(1): 141-151. [3] 崔淑梅, 宋贝贝, 王志远. 电动汽车动态无线供电磁耦合机构研究综述[J]. 电工技术学报, 2022, 37(3): 537-554. Cui Shumei, Song Beibei, Wang Zhiyuan.Overview of magnetic coupler for electric vehicles dynamic wireless charging[J]. Transactions of China Electro- technical Society, 2022, 37(3): 537-554. [4] Lu Fei, Zhang Hua, Zhu Chong, et al.A tightly coupled inductive power transfer system for low- voltage and high-current charging of automatic guided vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 6867-6875. [5] 潘帅帅, 麦瑞坤, 徐叶飞, 等. 自动导引车感应充电系统目标三维空间漏磁屏蔽[J]. 电工技术学报, 2022, 37(5): 1078-1087. Pan Shuaishuai, Mai Ruikun, Xu Yefei, et al.Three- dimensional target space magnetic leakage shielding for AGV inductive charging system[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1078-1087. [6] 周玮, 蓝嘉豪, 麦瑞坤, 等. 无线充电电动汽车V2G模式下光储直流微电网能量管理策略[J]. 电工技术学报, 2022, 37(1): 82-91. Zhou Wei, Lan Jiahao, Mai Ruikun, et al.Research on power management strategy of DC microgrid with photovoltaic, energy storage and EV-wireless power transfer in V2G mode[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 82-91. [7] 戴卫力, 费峻涛, 肖建康, 等. 无线电能传输技术综述及应用前景[J]. 电气技术, 2010, 11(7): 1-6. Dai Weili, Fei Juntao, Xiao Jiankang, et al.An overview and application prospect of wireless power transmission technology[J]. Electrical Engineering, 2010, 11(7): 1-6. [8] Li Shuaijun, Zhang Guilin, Lei Xiangyu, et al.Trajectory tracking control of a unicycle-type mobile robot with a new planning algorithm[C]//2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 2017: 780-786. [9] Li Zhenjie, Zhu Chunbo, Jiang Jinhai, et al.A 3kW wireless power transfer system for sightseeing car supercapacitor charge[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3301-3316. [10] Li Hongchang, Li Jie, Wang Kangping, et al.A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3998-4008. [11] Berger A, Agostinelli M, Vesti S, et al.A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6338-6348. [12] Huh J, Lee S W, Cho G H, et al.Narrow-width inductive power transfer system for online electrical vehicles[J]. IEEE Transactions on Power Electronics, 2011, 26(12): 3666-3679. [13] Choi S Y, Jeong S Y, Gu B W, et al.Ultraslim S-type power supply rails for roadway-powered electric vehicles[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6456-6468. [14] Feng Hao, Cai Tao, Duan Shanxu, et al.An LCC- compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6591-6601. [15] Feng Hao, Cai Tao, Duan Shanxu, et al.A dual- side-detuned series-series compensated resonant con- verter for wide charging region in a wireless power transfer system[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2177-2188. [16] Hao H, Covic G A, Boys J T.A parallel topology for inductive power transfer power supplies[J]. IEEE Transactions on Power Electronics, 2014, 29(3): 1140-1151. [17] Feng Hao, Dayerizadeh A, Lukic S.A coupling- insensitive X-type IPT system for high position tolerance[J]. IEEE Transactions on Industrial Elec- tronics, 2020, 68(8): 6917-6926. [18] 丰昊, 蔡涛, 段善旭, 等. 一种抗宽范围耦合系数波动的三元件补偿型感应式能量传输系统[J]. 电工技术学报, 2017, 32(增刊2): 10-17. Feng Hao, Cai Tao, Duan Shanxu, et al.A three- element inductive power transfer system with high misalignment tolerance[J]. Transactions of China Electrotechnical Society, 2017, 32(S2): 10-17. [19] 胡宏晟, 蔡涛, 段善旭, 等. 用于WPT系统的一次侧失谐SS型补偿拓扑及其参数设计方法[J]. 电工技术学报, 2017, 32(18): 73-82. Hu Hongsheng, Cai Tao, Duan Shanxu, et al.Study of the primary side detuned series-series compensated topology and parameter design for WPT system[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 73-82. [20] Yao Yousu, Wang Yijie, Liu Xiaosheng, et al.Particle swarm optimization-based parameter design method for S/CLC-compensated IPT systems featuring high tolerance to misalignment and load variation[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5268-5282. [21] Jeong S Y, Park J H, Hong G P, et al.Autotuning control system by variation of self-inductance for dynamic wireless EV charging with small air gap[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5165-5174. [22] Grant A C, John T B, Michael L G K, et al. A three-phase inductive power transfer system for roadway-powered vehicles[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3370-3378. [23] Sampath J P K, Vilathgamuwa D M, Alphones A. Efficiency enhancement for dynamic wireless power transfer system with segmented transmitter array[J]. IEEE Transactions on Transportation Electrification, 2016, 2(1): 76-85. [24] Erickson R W, Maksimovic D.Fundamentals of power electronics[M]. New York: Springer, 2001. [25] 刘方, 陈凯楠, 蒋烨, 等. 双向无线电能传输系统效率优化控制策略研究[J]. 电工技术学报, 2019, 34(5): 891-901. Liu Fang, Chen Kainan, Jiang Ye, et al.Research on the overall efficiency optimization of the bidirectional wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 891-901. [26] Li Yong, Liu Shunpan, Zhu Xiao, et al.Extension of ZVS region of series-series WPT systems by an auxiliary variable inductor for improving efficiency[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7513-7525. [27] Nguyen B X, Vilathgamuwa D M, Foo G H B, et al. An efficiency optimization scheme for bidirectional inductive power transfer systems[J]. IEEE Transa- ctions on Power Electronics, 2015, 30(11): 6310-6319. [28] Zhao Lei, Thrimawithana D J, Madawala U K, et al.A misalignment-tolerant series-hybrid wireless EV charging system with integrated magnetics[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1276-1285.