Abstract:Magnetic Coupling Resonance Wireless Power Transfer (MCR-WPT) technique has advantages of wide transfer distance, high efficiency, high power, etc. Therefore it has been extensively study by researchers around the world. However MCR-WPT technique requires high frequency AC source from 20 kHz to 20 MHz,proposing a challenge to the selection and the design of high frequency inverters. In order to provide guidance and technical support for the development of MCR-WPT technique, this paper first analyzes the difficulty of inverters design according to the characteristic of MCR-WPT system. Then the operating characteristics of high frequency inverters frequently-used in MCR-WPT system is summarized. At the same time, their control technique is discussed. And finally the method of parameters design and components selection for high frequency inverters is proposed.
韩冲, 张波. 谐振式无线电能传输系统中高频逆变器的特性分析和参数设计[J]. 电工技术学报, 2018, 33(21): 5036-5050.
Han Chong, Zhang Bo. Characteristics Analysis and Parameters Design of High Frequency Inverters in Magnetic Coupling Resonance Wireless Power Transfer System. Transactions of China Electrotechnical Society, 2018, 33(21): 5036-5050.
[1] Kurs A, Karalis A, Moffatt R, et al.Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83. [2] Li Zhenjie, Zhu Chunbo, Jiang Jinhai, et al.A 3-kW wireless power transfer system for sightseeing car supercapacitor charge[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3301-3316. [3] Kim J H, Lee B S, Lee J H, et al.Development of 1-MW inductive power transfer system for a high-speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6242-6250. [4] Pinuela M, Yates D C, Lucyszyn S, et al.Maximizing DC-to-load efficiency for inductive power transfer[J]. IEEE Transactions on Power Electronics, 2012, 28(5): 2437-2447. [5] Ahn D, Mercier P P.Wireless power transfer with concurrent 200-kHz and 6.78-MHz operation in a single-transmitter device[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 5018-5029. [6] Choi J, Tsukiyama D, Tsuruda Y, et al.13.56 MHz 1.3 kW resonant converter with GaN FET for wireless power transfer[C]//Wireless Power Transfer Conference (WPTC), Boulder, 2015: 1-4. [7] 田子建, 杜欣欣, 樊京, 等. 磁耦合谐振无线输电系统不同拓扑结构的分析[J]. 电气工程学报, 2015, 10(6): 47-57. Tian Zijian, Du Xinxin, Fan Jing, et al.Analysis on different topology structures in magnetic coupling resonant wireless power transmission system[J]. Journal of Electrical Engineering, 2015, 10(6): 47-57. [8] 胡宏晟, 蔡涛, 段善旭, 等. 用于WPT系统的一次侧失谐SS型补偿拓扑及其参数设计方法[J]. 电工技术学报, 2017, 32(18): 73-82. Hu Hongsheng, Cai Tao, Duan Shanxu, et al.Study of the primary side detuned series-series compensated topology and parameter design for WPT system[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 73-82. [9] 李琳, 李然. 双频段磁耦合谐振式无线电能传输系统特性分析及实验验证[J]. 电工技术学报, 2017, 32(18): 90-97. Li Lin, Li Ran.Analysis and experimental verification of dual-band wireless power transfer system via magnetic resonant coupling[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 90-97. [10] 刘闯, 郭赢, 葛树昆, 等. 具备恒压特性的SP/S感应式无线电能传输系统[J]. 电工技术学报, 2016, 31(13): 149-154. Liu Chuang, Guo Ying, Ge Shukun, et al.The SP/S inductive power transfer system with constant voltage caracteristics[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 149-154. [11] Zheng Cong, Ma Hongbo, Lai J S, et al.Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6108-6119. [12] Jolani F, Yu Yiqiang, Chen Zhizhang.A planar magnetically coupled resonant wireless power transfer system using printed spiral coils[J]. IEEE Antennas & Wireless Propagation Letters, 2014, 13(1): 1648-1651. [13] 黄晓生, 陈为. 线圈高频损耗解析算法改进及在无线电能传输磁系统设计的应用[J]. 电工技术学报, 2015, 30(8): 62-70. Huang Xiaosheng, Chen Wei.Improved analytical calculation model of high-frequency coil losses and its usage in wpt magnetic system[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 62-70. [14] Waters B H, Mahoney B J, Lee G, et al.Optimal coil size ratios for wireless power transfer applications[C]// IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, 2014: 2045-2048. [15] 宋凯, 李振杰, 杜志江, 等. 变负载无线充电系统的恒流充电技术[J]. 电工技术学报, 2017, 32(13): 130-136. Song Kai, Li Zhenjie, Du Zhijiang, et al.Constant current charging technology for variable load wireless charging system[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 130-136. [16] Koh K E, Beh T C, Imura T, et al.Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling[J]. IEEE Transactions on Industry Applications, 2014, 50(3): 2061-2070. [17] Ahn D, Kim S, Moon J, et al.Wireless power transfer with automatic feedback control of load resistance transformation[J]. IEEE Transactions on Power Electronics, 2016, 31(11): 7876-7886. [18] Huang Y, Shinohara N, Mitani T.Impedance matching in wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(2): 582-590. [19] Li Hongchang, Li Jie, Wang Kangping, et al.A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3998-4008. [20] Fu Minfan, Ma Chengbin, Zhu Xinen.A cascaded boost-buck converter for high-efficiency wireless power transfer systems[J]. IEEE Transactions on Industrial Informatics, 2014, 10(3): 1972-1980. [21] Berger A, Agostinelli M, Vesti S, et al.A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6338-6348. [22] Kazimierczuk M K.RF power amplifier[M]. Hoboken: Wiley-Blackwell(an imprint of John Wiley & Sons Ltd), 2014. [23] Kan Tianze, Mai Ruikun, Mercier P P, et al.Design and analysis of a three-phase wireless charging system for lightweight autonomous underwater vehicles[J]. IEEE Transactions on Power Electronics, 2018, 33(8): 6622-6632. [24] Zhang Jiantao, Zhu Chunbo, Chan C C.A wireless power charging method for automated guided vehicle[C]//Electric Vehicle Conference, Florence, 2015:1-5. [25] Zhao Chongwen, Costinett D.GaN-based, dual-mode wireless power transfer using multi-frequency programmed pulse width modulation[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 9165-9176. [26] Li Siqi, Mi C C.Wireless power transfer for electric vehicle applications[J]. IEEE Journal of emerging & Selected Topics in Power Electronics, 2015, 3(1): 4-17. [27] Fujita T, Yasuda T, Akagi H.A dynamic wireless power transfer system applicable to a stationary system[J]. IEEE Transactions on Industry Applications, 2017, 53(4): 3748-3757. [28] Feng Hao, Cai Tao, Duan Shanxu, et al.An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6591-6601. [29] Shijo T, Ogawa K, Suzuki M, et al.EMI reduction technology in 85 kHz band 44 kW wireless power transfer system for rapid contactless charging of electric bus[C]//2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 2016:1-6. [30] Li Xing, Tsui C Y, Ki W H.A 13.56MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices[J]. IEEE Journal of Solid-State Circuits, 2015, 50(4): 978-989. [31] Cai A, Siek L.A 2kW, 95% efficiency inductive power transfer system using gallium nitride gate injection transistors[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2017, 5(1): 458-468. [32] Yeo T D, Kwon D S, Khang S T, et al.Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank[J]. IEEE Transactions on Power Electronics, 2016, 32(1): 471-478. [33] Florian C, Mastri F, Paganelli R P, et al.Theoretical and numerical design of a wireless power transmission link with GaN-based transmitter and adaptive receiver[J]. IEEE Transactions on Microwave Theory & Techniques, 2014, 62(4): 931-946. [34] Li Hongchang, Wang Kangping, Huang Lang, et al.Dynamic modeling based on coupled modes for wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6245-6253. [35] Samanta S, Rathore A K.Wireless power transfer technology using full-bridge current-fed topology for medium power applications[J]. IET Power Electronics, 2016, 9(9): 1903-1913. [36] Samanta S, Rathore A K, Sahoo S K.Concept study and feasibility analysis of current-fed power electronics for wireless power transfer system[C]//2016 IEEE International Conference on Power Electronics, Drives and Energy System (PEDES), Trivandrum, 2016: 1-6. [37] Rathore A K, Samanta S, Thrimawithana D J.Analysis and design of current-fed half-bridge (C)(LC)-(LC) resonant topology for inductive wireless power transfer application[J]. IEEE Transactions on Industry Applications, 2017, 53(4): 3917-3926. [38] Kwon Y, Ahn D.Self-oscillating current-fed inverter with low switching loss for wireless power transfer[J]. Electronics Letters, 2017, 53(14): 949-951. [39] Samanta S, Rathore A K.A new current-fed CLC transmitter and LC receiver topology for inductive wireless power transfer application: analysis, design, and experimental results[J]. IEEE Transactions on Transportation Electrification, 2016, 1(4): 357-368. [40] Samanta S, Rathore A K, Thrimawithana D J.Bidirectional current-fed half-bridge (C)(LC)-(LC) configuration for inductive wireless power transfer system[J]. IEEE Transactions on Industry Applications, 2017, 53(4): 4053-4062. [41] Xin Zan, Avestruz A T.Wireless power transfer for implantable medical devices using piecewise resonance to achieve high peak-to-average power ratio[C]// 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, 2017: 1-8. [42] Ahn D, Hong S.Wireless power transmission with self-regulated output voltage for biomedical implant[J]. IEEE Transactions on Industrial Electronics, 2013, 61(5): 2225-2235. [43] Wang Zhenya, Wang Xuemei, Zhang Bo.A magnetic coupled resonance WPT system design method of double-end impedance converter networks with Class-E amplifier[C]//41st Annual Conference of the IEEE-Industrial-Electronics-Society (IECON), Yokohama, 2015: 003093-003098. [44] Liu Hao, Shao Qi, Fang Xuelin.Modeling and optimization of class-e amplifier at subnominal condition in a wireless power transfer system for biomedical implants[J]. IEEE Transactions Biomed Circuits System, 2017, 11(1): 35-43. [45] Chen Peng, He Songbai.Analysis of inverse class-E power amplifier at subnominal condition with 50% duty ratio[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2015, 62(4): 342-346. [46] Liu Ming, Liu Shuangke, Ma Chengbin.A high-efficiency/output power and low-noise megahertz wireless power transfer system over a wide range of mutual inductance[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4317-4325. [47] Raab F H.Idealized operation of the class E tuned power amplifier[J]. IEEE Transactions on Circuits & Systems, 1977, 24(12): 725-735. [48] Aldhaher S, Luk C K, Whidborne J F.Electronic tuning of misaligned coils in wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 5975-5982. [49] Aldhaher S, Luk C K, Whidborne J F.Tuning class E inverters applied in inductive links using saturable reactors[J]. IEEE Transactions on Power Electronics, 2014, 29(6): 2969-2978. [50] Ji Li, Song Yuyu, Wang Lifang, et al.A novel control strategy for wireless charging in electric vehicle based on class E amplifier[C]//IEEE-PELS Workshop on Emerging Technologies—Wireless Power Transfer (WoW), Chongqing, 2017: 1-4. [51] Lim Y, Tang H, Lim S, et al.An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer[J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4403-4413. [52] Liu Shuangke, Liu Ming, Yang Songnan, et al.A novel design methodology for high-efficiency current-mode and voltage-mode class-E power amplifiers in wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4514-4523. [53] Fu Minfan, Yin He, Liu Ming, et al.Loading and power control for a high-efficiency class E PA-driven megahertz WPT system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6867-6876. [54] Aldhaher S, Yates D C, Mitcheson P D.Design and development of a class EF2 inverter and rectifier for multimegahertz wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8138-8150. [55] Aldhaher S, Mitcheson P D, Yates D C.Load-independent class EF inverters for inductive wireless power transfer[C]//2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, 2016: 1-4. [56] Aldhaher S, Kkelis G, Yates D C, et al.Class EF2 inverters for wireless power transfer applications[C]// 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, 2015:1-4. [57] Choi J, Tsukiyama D, Rivas J.Evaluation of a 900 V SiC MOSFET in a 13.56 MHz 2 kW resonant inverter for wireless power transfer[C]//2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, 2016: 1-6. [58] Sugino M, Masamura T.The wireless power transfer systems using the class E push-pull inverter for industrial robots[C]//2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, 2017:1-3. [59] Yates D C, Aldhaher S, Mitcheson P D.Design of 3 MHz DC/AC inverter with resonant gate drive for a 3.3 kW EV WPT system[C]//2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, 2016: 1-4. [60] Mousavian H, Abnavi S, Bakhshai A, et al.A push-pull class E converter with improved PDM control[C]//2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, BC, 2016: 1-6. [61] Rahnamaee H R, Thrimawithana D J, Madawala U K.MOSFET based multilevel converter for IPT systems[C]//IEEE International Conference on Industrial Technology (ICIT), Busan, 2014: 295-300. [62] Li Yong, Mai Ruikun, Lu Liwen, et al.Active and reactive currents decomposition-based control of angle and magnitude of current for a parallel multiinverter IPT system[J]. IEEE Transactions on Power Electronics, 2016, 32(2): 1602-1614. [63] Deng Qijun, Liu Jiangtao, Czarkowski D, et al.An inductive power transfer system supplied by a multiphase parallel inverter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7039-7048. [64] Huang Runhong, Zhang Bo, Qiu Dongyuan, et al.Frequency splitting phenomena of magnetic resonant coupling wireless power transfer[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [65] Ibrahim M, Bernard L, Pichon L, et al.Inductive charger for electric vehicle: advanced modeling and interoperability analysis[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8096-8114. [66] Ameri M H, Varjani A Y, Mohamadian M.A novel algorithm for tracking maximum inductive transferred power point[C]//4th Annual Internatiional Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Tehran, 2013:372-377. [67] Iguchi S, Yeon P, Fuketa H, et al.Wireless power transfer with zero-phase-difference capacitance control[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2017, 62(4): 938-947. [68] Iguchi S, Yeon P, Fuketa H, et al.Zero phase difference capacitance control (ZPDCC) for magnetically resonant wireless power transmission[C]//IEEE Wireless Power Transfer Conference (WPT), Perugia, 2013: 25-28. [69] Seo D W, Lee J H.Frequency-tuning method using the reflection coefficient in a wireless power transfer system[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(11): 959-961. [70] Gati E, Kampitsis G, Manias S.Variable frequency controller for inductive power transfer in dynamic conditions[J]. IEEE Transactions on Power Electronics, 2016, 32(2): 1684-1696. [71] Gati E, Kampitsis G, Stavropoulos I, et al.Wireless phase - locked loop control for inductive power transfer systems[C]//30th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, 2015: 1601-1607. [72] 傅文珍, 张波, 丘东元. 频率跟踪式谐振耦合电能无线传输系统研究[J]. 变频器世界, 2009(8): 41-46. Fu Wenzhen, Zhang Bo, Qiu Dongyuan.Study on frequency-tracking wireless power transfer system by resonant coupling[J]. The World of Inverters, 2009(8): 41-46. [73] Patil D, Sirico M, Lei G, et al.Maximum efficiency tracking in wireless power transfer for battery charger: Phase shift and frequency control[C]//IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 2016: 1-8. [74] Zhao Rui, Gladwin D T, Stone D A.Phase shift control based maximum efficiency point tracking in resonant wireless power system and its realization[C]//42nd Annual Conference of the IEEE-Industrial-Electronics-Society (IECON), Florence, 2016: 4541-4546. [75] Zhong Wenxing, Hui S Y R. Maximum energy efficiency tracking for wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 4025-4034. [76] Dai Xin, Jiang Jincheng, Li Yanling, et al.Topology optimization and phase shift control for inductive power transfer with dual excitation units[C]//IEEE-PELS Workshop on Emerging Technologies—Wireless Power Transfer (WoW), Chongqing, 2017: 300-304. [77] Geng Yuyu, Yang Zhongping, Lin Fei, et al.Optimization of compensation capacitor for wireless power transfer system based on inverter loss[C]//13th IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, 2016: 1-6. [78] Buja G, Bertoluzzo M, Mude K N.Design and experimentation of WPT charger for electric city car[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7436-7447. [79] Nguyen B X, Vilathgamuwa D M, Foo G H B, et al. An efficiency optimization scheme for bidirectional inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6310-6319. [80] Zhong Wenxing, Hui S Y R. Maximum energy efficiency operation of series-series resonant wireless power transfer systems using on-off keying modulation[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3595-3603. [81] Choi J, Tsukiyama D, Rivas J.Comparison of SiC and eGaN devices in a 6.78 MHz 2.2 kW resonant inverter for wireless power transfer[C]//IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 2016: 1-6. [82] Yates D C, Aldhaher S, Mitcheson P D.A 100-W 94% efficient 6-MHz SiC class E inverter with a sub 2-W GaN resonant gate drive for IPT[C]//IEEE Wireless Power Transfer Conference (WPTC), Aveiro, 2016: 1-3. [83] Madsen M P, Pedersen J A, Knott A, et al.Self-oscillating resonant gate drive for resonant inverters and rectifiers composed solely of passive components[C]// 29th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, 2014: 2029-2035.