Abstract:In order to solve the problem of low accuracy of the low frequency oscillation modal parameter identification method in Gauss color noise and multi-channel signal, this paper presents a new method of resonance sparse signal decomposition (RSSD) used in the fault diagnosis of rolling bearings and independent component algorithm (ICA) applied to hybrid image separation are combined into the power system to realize low-frequency oscillation mode identification. The method uses RSSD to remove Gaussian color noise and transient impact to extract low-frequency oscillatory sustained signal , and then uses ICA to estimate the frequency and damping ratio of continuous signal. By comparing with ESPRIT and Prony methods, it is shown that this method can identify multi-channel signal parameters more quickly and accurately under the background of Gauss color noise and transient impact, and meet the requirements of identification of low-frequency oscillation in power system, so it has good application prospects.
刘君, 肖辉, 曾林俊, 江维. 基于RSSD和ICA算法的低频振荡模态参数辨识[J]. 电工技术学报, 2018, 33(21): 5051-5058.
Liu Jun, Xiao Hui, Zeng Linjun, Jiang Wei. Parameter Identification of Low Frequency Oscillation Based on RSSD and ICA Algorithm. Transactions of China Electrotechnical Society, 2018, 33(21): 5051-5058.
[1] Kunder P.电力系统稳定与控制[M]. 北京: 中国电力出版社, 2002. [2] 吴小钊, 管保安, 动姝言. 基于改进矩阵束的次同步低频振荡模态参数辨识方法研究[J]. 陕西电力, 2014, 42(3): 32-35. Wu Xiaozhao, Guan Bao’an, Dong Shuyan.Subsynchronous low frequency oscillatory modal parameter identification method based on improved matrix beam[J]. Shanxi Electric Power, 2014, 42(3): 32-35. [3] 王祥超. 基于广域量测的电力系统低频振荡模式辨识研究[D]. 成都: 西南交通大学, 2015. [4] 李勋, 龚庆武, 贾晶晶, 等. 基于原子稀疏分解的低频振荡模态参数辨识方法[J]. 电工技术学报, 2012, 27(9): 124-133. Li Xun, Gong Qingwu, Jia Jingjing, et al.Atomic sparse decomposition based identification method for low frequency oscillation modal parameters[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 124-133. [5] 汪颂军, 刘涤尘, 廖清芬, 等. 基于EEMD-NExT 的低频振荡主导模式工况在线辨识与预警[J]. 电力自动化设备, 2014, 34(12): 111-116. Wang Songjun, Liu Dichen, Liao Qingfen, et al.Online dominant mode identification and warning based on EEMD-NEXT for low frequency oscillation in operating conditions[J]. Electric Power Automation Equipment, 2014, 34(12): 111-116. [6] 胡昊明, 郑伟, 徐伟, 等. Prony和HHT算法在低频振荡在线辨识中适用性比较[J]. 电力系统保护与控制, 2013, 41(14): 33-40. Hu Haoming, Zheng Wei, Xu Wei, et al.Comparison of the applicability of Prony and HHT algorithms in on-line identification of low frequency oscillations[J]. Power System Protection and Control, 2013, 41(14): 33-40. [7] 谢剑, 王晓茹, 张鹏. 基于PRCE方法的低频振荡模式识别[J].中国电机工程学报, 2017, 37(11): 3129-3137. Xie Jian, Wang Xiaoru, Zhang Peng.Low frequency oscillation pattern recognition based on PRCE method[J]. Proceedings of the CSEE, 2017, 37(11): 3129-3137. [8] Tripathy P, Srivastava S C, Singh S N, et al.A modified TLS-ESPRIT-based method for low-frequency mode identification in power systems utilizing synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2011, 26(2): 719-727. [9] 王臻, 李承, 林志芳, 等. 考虑高斯有色噪声的FOMC-HTLS-Adaline算法在低频振荡模式辨识中的研究[J]. 电工技术学报, 2017, 32(6): 21-30. Wang Zhen, Li Cheng, Lin Zhifang, et al.Studies on the identification of low-frequency oscillation modes by the policy-based FOMC-HTLS-Adaline algorithm of gaussian colored noise[J]. Transactions of China Electrotechnical Society, 2013, 32(6): 21-30. [10] 赵妍, 李志民, 李天云. 低频振荡模态参数辨识的共振稀疏分解SSI分析方法[J]. 电工技术学报, 2016, 31(2): 136-144. Zhao Yan, Li Zhimin, Li Tianyun.Resonance sparse decomposition SSI analysis method for modal parameter identification of low frequency oscillation[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 136-144. [11] 陈向民, 于德介, 罗洁思. 基于信号共振稀疏分解的转子早期碰磨故障诊断方法[J]. 中国机械工程, 2013, 24(1): 35-40. Chen Xiangmin, Yu Dejie, Luo Jiesi.Early rub-impact diagnosis of rotors by using resonance base sparse signal decomposition[J]. China Mechanical Engineering, 2013, 24(1): 35-40. [12] 孙云嵩, 于德介, 陈向民. 基于信号共振稀分解的阶比分析及其在齿轮故障诊断中的应用[J]. 振动与冲击, 2013, 32(16): 88-94. Sun Yunsong, Yu Dejie, Chen Xiangmin.Order analysis based on signal resonance leakage decomposition and its application in gear fault diagnosis[J]. Vibration and Shock, 2013, 32(16): 88-94. [13] 许昕, 潘宏侠, 潘铭志. 独立分量分析在自动机振动信号处理中的应用[J]. 振动、测试与诊断, 2016, 36(1): 120-125. Xu Xin, Pan Hongxia, Pan Mingzhi.Application of independent component analysis in vibration signal processing of automata[J]. Journal of Vibration, Testing and Diagnostics, 2016, 36(1): 120-125. [14] 张亮, 张新燕, 王维庆. 基于改进多信号矩阵束算法的电力系统低频振荡模式辨识[J]. 电力系统保护与控制, 2013, 41(13): 26-30. Zhang Liang, Zhang Xinyan, Wang Weiqing.Identification of power system low frequency oscillation modes based on improved multiple signal matrix pencil algorithm[J]. Power System Protection and control, 2013, 41(13): 26-30. [15] 王臻, 李承, 张舜钦, 等. 基于改进矩阵束滤波与检测的异步电动机故障诊断新方法[J]. 电工技术学报, 2015, 30(12): 213-219. Wang Zhen, Li Cheng, Zhang Shunqin, et al.A new filter and detection approach of fault in asynchronous motor based on improved matrix pencil[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 213-219. [16] 雷强, 刘光晔, 朱永强, 等. 基于EEMD和矩阵束算法的低频振荡主导模式识别[J]. 电力系统保护与控制, 2016, 44(12): 56-62. Lei Qiang, Liu Guangye, Zhu Yongqiang, et al.Dominant mode identification of low frequency oscillation based on EEMD and matrix beam arithmetic[J]. Power System Protection and Control, 2016, 44(12): 56-62. [17] 金涛, 刘对. 基于广义滤波与改进矩阵束的电力系统低频振荡模态识别[J]. 电工技术学报, 2017, 32(6): 3-13. Jin Tao, Liu Dui.Based on generalized filtering and improve the matrix of power system low frequency oscillation modal identification[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 3-13. [18] 李安娜, 吴熙, 蒋平, 等. 基于形态滤波Prony 算法的低频振荡模式辨识的研究[J]. 电力系统保护与控制, 2015, 43(3): 137-142. Li Anna, Wu Xi, Jiang Ping, et al.Research on pattern recognition of low frequency oscillation based on morphological filtering Prony algorithm[J]. Power System Protection and Control, 2015, 43(3): 137-142. [19] Darshana P W, Udaya D A, Krish N.Identification of dominant low-frequency modes in ring-down oscillations using multiple Prony models[J]. IET Generation Transmission & Distribibution, 2015, 9(15): 2206-2214.