Abstract:This paper investigates the use of the natural excitation technique (NExT) in conjunction with the multi reference poly-reference complex exponential (PRCE) for the modal analysis of power systems based on the ambient data. The PRCE method was formerly applied to analyze the vibration characteristics of mechanism structures. The NexT-PRCE method contain two steps: the ring-down signals is extracted from ambient data by the NExT method, then the mode parameters are estimated by the PRCE algorithm form the ring-down signals. Estimated results based on Monte Carlo simulations on the 16 machine power system model show that the NExT-PRCE method can effectively identify the frequency, damping ratio and mode shape. The comparisons with other existed methods that the results estimated by the NExT-PRCE method is more accurate and the proposed method performance better with the measurement noise. The analysis based on the measured data from Sichuan power grid indicates the feasibility and validity of the new method proposed in this paper. It also provides a new way for power system stability analysis.
谢剑, 成业, 王晓茹. 基于NExT和PRCE方法的低频振荡分析[J]. 电工技术学报, 2018, 33(1): 121-130.
Xie Jian, Cheng Ye, Wang Xiaoru. Estimation of Electromechanical Oscillation Modes Based on NExT-PRCE Method. Transactions of China Electrotechnical Society, 2018, 33(1): 121-130.
[1] Kundur P. Power system stability and control [M]. New York: McGraw-Hill Professional, 1994. [2] 徐千鸣, 罗安, 马伏军, 等. 考虑低频振荡的MMC有源阻尼环流抑制方法[J]. 电工技术学报, 2015, 30(24): 118-126. Xu Qianming, Luo An, Ma Fujun, et al. Circulating current suppressing method based on active damping control of MMC considering low-frequency oscillation[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 118-126. [3] 赵妍, 李志民, 李天云. 低频振荡模态参数辨识的共振稀疏分解SSI分析方法[J]. 电工技术学报, 2016, 31(2): 136-144. Zhao Yan, Li Zhimin, Li Tianyun. Low frequency oscillation modal parameter identification using resonance-based sparse signal decomposition and SSI method[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 136-144. [4] Zhang Peng, Wang Xiaoru, Wang Xiangchao, et al. Synchronized measurement based estimation of inter-area electromechanical modes using the Ibrahim time domain method[J]. Electric Power Systems Research, 2014, 111(6): 85-95. [5] Hauer J F, Demeure C J, Scharf L L. Initial results in Prony analysis of power system response signals[J]. IEEE Transactions on Power Systems, 1990, 5(1): 80-89. [6] 张静, 徐政, 王峰, 等. TLS-ESPRIT算法在低频振荡分析中的应用[J]. 电力系统自动化, 2007, 31(20): 84-88. Zhang Jing, Xu Zheng, Wang Feng, et al. TLS- ESPRIT based method for low frequency oscillation analysis in power system[J]. Automation of Electric Power Systems, 2007, 31(20): 84-88. [7] Seppänen J M, Koivisto M, Koivisto M, et al. Modal analysis of power systems through natural excitation technique[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1642-1652. [8] 赵妍, 李志民, 李天云. 电力系统低频振荡监测的Duffing振子可停振动系统法[J]. 电工技术学报, 2015, 30(20): 159-167. Zhao Yan, Li Zhimin, Li Tianyun. Duffing oscillator order stopping oscillation system method for monitoring of low-frequency oscillation in power system[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 159-167. [9] 陈恩泽, 刘涤尘, 廖清芬, 等. 多重扰动下的跨区电网低频振荡研究[J]. 电工技术学报, 2014, 29(2): 290-296. Chen Enze, Liu Dichen, Liao Qingfen, et al. Research on low frequency oscillation of interconnected power grid based on multiple disturbances[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 290-296. [10] Sarmadi S A N, Venkatasubramanian V. Electromechanical mode estimation using recursive adaptive stochastic subspace identification[J]. IEEE Transactions on Power Systems, 2014, 29(1): 349-358. [11] James G H, Carne T G, Lauffer J P. The natural excitation technique for modal parameter extraction from operating wind turbines[R]. Sandia National Laboratories, SAND92-1666 UC-261, 1993, Albuquerque, NM, USA. [12] 王祥超, 张鹏, 甄威, 等. 基于自然激励技术和 TLS-ESPRIT 方法的低频振荡模式辨识[J]. 电力系统自动化, 2015, 39(10): 75-80. Wang Xiangchao, Zhang Peng, Zhen Wei, et al. Identification of low frequency oscillation modes based on NExT and TLS-ESPRIT algorithm[J]. Automation of Electric Power Systems, 2015, 39(10): 75-80. [13] Thambirajah J, Barocio E, Thornhill N F. Comparative review of methods for stability monitoring in electrical power systems and vibrating structures[J]. Iet Generation Transmission & Distribution, 2010, 4(10): 1086-1103. [14] 李德葆. 实验模态分析及其应用[M]. 北京: 科学出版社, 2001. [15] Caicedo J M, Dyke S J, Johnson E A, et al. Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data[J]. Journal of Engineering Mechanics, 2004, 130(1): 49-60. [16] Moncayo H, Marulanda J, Thomson P, et al. Identification and monitoring of modal parameters in aircraft structures using the natural excitation technique (NExT) combined with the eigensystem realization algorithm (ERA)[J]. Journal of Aerospace Engineering, 2010, 23(2): 99-104. [17] 曹树谦, 张文德, 萧龙翔. 振动结构模态分析一理论、试验与应用[M]. 2版. 天津: 天津大学出版社, 2014. [18] Vold H, Kundrat J, Rocklin G T, et al. A multi-input modal estimation algorithm for mini-computers[J]. SAE Technical Paper, 1982, 91(1): 828-846. [19] Vold H, Rocklin G T. The numerical implementation of a multi-input modal estimation method for mini-computers[C]//International Modal Analysis Conference Proceedings, Orlando, Florida, 1982. [20] 俞云书. 结构模态试验分析[M]. 北京: 宇航出版社, 2000. [21] 张贤达. 现代信号处理[M]. 北京: 清华大学出版社, 2002. [22] Tripathy P, Srivastava S C, Singh S N, et al. A modified TLS-ESPRIT-based method for low-frequency mode identification in power systems utilizing synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2011, 26(2): 719-727. [23] Rogers G. Power system oscillation[M]. Boston: Springer US, 2000. [24] 王祥超. 基于广域量测的电力系统低频振荡模式辨识研究[D]. 成都: 西南交通大学, 2015. [25] 张鹏. 基于广域量测的电力系统区域间低频振荡分析[D]. 成都: 西南交通大学, 2015. [26] Turunen J, Thambirajah J, Larsson M, et al. Comparison of three electromechanically oscillation damping estimation methods[J]. IEEE Transactions on Power Systems, 2011, 26(4): 2398-2407. [27] 四川电科院, 中国电科院. 特高压交直流送端电网稳定控制及网架结构优化研究[R]. 2013. [28] 四川电科院, 浙江大学. 特高压直流输电对四川电网影响研究[R]. 2012.