In recent years, there have been a number of low-frequency oscillations (LFO) of electric multiple units and traction network coupling system (EMUs-TNCS) in high-speed railways, leading to traction blockade of the EMUs. Taking the CRH5 EMUs as an example, this paper presents a double closed-loop control strategy for EMUs PWM rectifiers based on current passivity-based control of sliding mode structure (CPBC-SMS) to suppress the LFO. Firstly, a return-ratio matrix model of the EMUs-TNCS is established, and the generation mechanism of the LFO is analyzed by using the G-sum norm criterion, obtaining the critical condition of the LFO. Then, according to operating conditions of the LFO, the state space model of each EMUs rectifier is derived in dq-frame. Subsequently, the internal loop current controller based on CPBC-SMS is designed. Stability analysis and simulation results validate that the proposed control provides effective capability of the LFO suppression with better steady-state and dynamic performance compared to several conventional methods.
王迎晨, 杨少兵, 宋可荐, 吴命利. 基于滑模结构无源控制的车网耦合系统低频振荡抑制方法[J]. 电工技术学报, 2020, 35(3): 553-563.
Wang Yingchen, Yang Shaobing, Song Kejian, Wu Mingli. An Approach Based on SMS to Suppress Low-Frequency Oscillation in the EMUs and Traction Network Coupling System Using PBC. Transactions of China Electrotechnical Society, 2020, 35(3): 553-563.
[1] 王晖. 电气化铁路车网电气低频振荡研究[D]. 北京: 北京交通大学, 2015.
[2] 王晖, 吴命利. 电气化铁路低频振荡研究综述[J]. 电工技术学报, 2015, 30(17): 70-78.
Wang Hui, Wu Mingli.Review of low-frequency oscillation in electric railways[J]. Transactions of China Electrotchnical Society, 2015, 30(17): 70-78.
[3] 任必兴, 杜文娟, 王海风. UPFC与系统的强动态交互对机电振荡模式的影响[J]. 电工技术学报, 2018, 33(11): 2520-2534.
Ren Bixing, Du Wenjuan, Wang Haifeng.Impact of strong dynamic interaction between UPFC and system on electromechanical oscillation mode[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2520-2534.
[4] 马啟潇, 陈莉. 牵引供电系统谐波谐振特性分析[J]. 电气技术, 2012, 13(9): 38-43.
Ma Qixiao, Chen Li.Traction power supply system harmonic resonance characterization[J]. Electrical Engineering, 2012, 13(9): 38-43.
[5] 金涛, 刘对. 基于广义形态滤波与改进矩阵束的电力系统低频振荡模态辨识[J]. 电工技术学报, 2017, 32(6): 3-13.
Jin Tao, Liu Dui.Power system low-frequency oscillation identification based on the generalized morphological method and improved matrix pencil algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 3-13.
[6] 龚鸿, 江伟, 王渝红, 等. 基于静止同步补偿器与直流调制协调控制的低频振荡抑制方法[J]. 电工技术学报, 2017, 32(6): 67-75.
Gong Hong, Jang Wei, Wang Yuhong, et al.A survey on damping low-frequency oscillation based on coordination strategy of static synchronized compensator modulation[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 67-75.
[7] 谢剑, 成业, 王晓茹. 基于NExT和PRCE方法的低频振荡分析[J]. 电工技术学报, 2018, 33(1): 121-130.
Xie Jian, Cheng Ye, Wang Xiaoru.Estimation of electromechanical oscillation modes based on NExT-PRCE method[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 121-130.
[8] 陈宝平, 林涛, 陈汝斯, 等. 直驱风电场经VSC-HVDC并网系统的多频段振荡特性分析[J]. 电工技术学报, 2018, 33(增刊1): 176-184.
Chen Baoping, Lin Tao, Chen Rusi, et al.Characteristics of multi-band oscillation for direct drive wind farm interfaced with VSC-HVDC system[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 176-184.
[9] 李强. 电气化铁路车网电气匹配问题[J]. 电气化铁道, 2014, 12(3): 13-16.
Li Qiang.A electrical matching problem about train-catenary system in electric railway[J]. Electric Railway, 2014, 12(3): 13-16.
[10] 周毅, 胡海涛, 何正友, 等. 电气化铁路车网耦合系统低频振荡分析[J]. 中国电机工程学报, 2017, 37(9): 72-80.
Zhou Yi, Hu Haitao, He Zhengyou, et al.Analysis of low-frequency oscillation in train-traction network coupling system of electrified railway[J]. Proceedings of the CSEE, 2017, 37(9): 72-80.
[11] 刘诗慧, 林飞, 杨中平, 等. 抑制电气化铁路低频振荡的四象限变流器控制方法[J]. 电工技术学报, 2016, 31(增刊2): 76-83.
Liu Shihui, Lin Fei, Yang Zhongping, et al.Control method of four quadrant converter to restrain low-frequency oscillation of electrified railway[J]. Transactions of China Electrotechnical Society, 2016, 31(S2): 76-83.
[12] Liao Yicheng, Liu Zhigang, Zhang Guinan, et al.Vehicle-grid system modeling and stability analysis with forbidden region-based criterion[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3499-3512.
[13] Liu Zhigang, Zhang Guinan, Liao Yicheng.Stability research of high-speed railway EMUs and traction network cascade system considering impedance matching[J]. IEEE Transactions on Industry Applications, 2016, 52(5): 4315-4326.
[14] 许加柱, 程慧婕, 黄文, 等. 自适应自抗扰比例积分控制下的高速铁路车网耦合系统低频振荡抑制方法[J]. 中国电机工程学报, 2018, 38(14): 4035-4045.
Xu Jiazhu, Cheng Huijie, Huang Wen, et al.A novel approach based on self-adaptive auto disturbance rejection proportional integral controller to suppress low-frequency oscillation of high speed railway electric multiple units-traction network coupling system[J]. Proceedings of the CSEE, 2018, 38(14): 4035-4045.
[15] Liu Zhigang, Xiang Chuan, Wang Yaqi, et al.A model-based predictive direct power control for traction line-side converter in high-speed railway[J]. IEEE Transactions on Industry Application, 2017, 53(5): 4934-4943.
[16] Liu Zhigang, Wang Yaqi, Liu Shuang, et al.An approach to suppress low-frequency oscillation by combining extended state observer with model predictive control of EMUs rectifier[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10282-10297.
[17] Geng Zhaozhao, Liu Zhigang, Hu Xinxuan, et al.Low-frequency oscillation suppression of the vehicle-grid system in high-speed railways based on H∞ control[J]. Energies, 2018, 11(6): 1594.
[18] Wang Yaqi, Liu Zhigang.Suppression research regarding low-frequency oscillation in the vehicle-grid coupling system using model-based predictive current control[J]. Energies, 2018, 11(7): 1803.
[19] Liu Zhigang, Geng Zhaozhao, Hu Xinxuan.An approach to suppress low-frequency oscillation in the traction network of high-speed railway using passivity-based control[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3909-3918.
[20] 刘爽, 刘志刚, 王亚绮, 等. 基于滑模控制的牵引网网压低频振荡抑制方法[J]. 电网技术, 2018, 42(9): 2999-3006.
Liu Shuang, Liu Zhigang, Wang Yaqi, et al.A novel approach based on SMC to traction network voltage low-frequency oscillation suppression research[J]. Power System Technology, 2018, 42(9): 2999-3006.
[21] 刘方诚, 刘进军, 张昊东, 等. 基于G-范数和sum-范数的三相交流级联系统稳定性判据[J]. 中国电机工程学报, 2014, 34(24): 4092-4100.
Liu Fangcheng, Liu Jinjun, Zhang Haodong, et al.G-norm and sum-norm based stability criterion for three-phase AC cascade systems[J]. Proceedings of the CSEE, 2014, 34(24): 4092-4100.
[22] Heising C, Oettmeier M, Bartelt R, et al.Single-phase 50kW 16.7Hz PI-controlled four-quadrant line-side converter lab model fed by rotary converter[C]// Proceedings of Compatibility and Power Electronics, Badajoz, Spain, 2009: 232-239.
[23] Bo Wen, Boroyevich D, Burgos R, et al.Analysis of dq small-signal impedance of grid-tied inverters[J]. IEEE Transactions on Power Electronics, 2015, 31(1): 675-687.
[24] 黄凯征, 汪万伟, 王旭. 基于滑模控制的PWM整流器建模与仿真[J]. 电网技术, 2009, 33(8): 18-23.
Huang Kaizheng, Wang Wanwei, Wang Xu.Modeling and simulation of PWM rectifier based on sliding-mode control[J]. Power System Technology, 2009, 33(8): 18-23.
[25] 王久和, 慕小斌. 电网不平衡时电压型PWM整流器混合无源控制[J]. 电工技术学报, 2015, 30(8): 159-166.
Wang Jiuhe, Mu Xiaobin.Hybrid passivity based control of voltage source PWM rectifiers under unbalanced voltage conditions[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 159-166.
[26] Wang Hui, Wu Mingli, Sun Juanjuan.Analysis of low-frequency oscillation in electric railways based on small-signal modeling of vehicle-grid system in dq frame[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 5318-5330.