Full-State Discrete-Time Model and the Output-Voltage-Ripple Analysis of the Dual Active Bridge Converter
Gao Guoqing1, Lei Wanjun1, Yuan Xiaojie2, Wei Caimeng2, Cui Yao1
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China;
2. Huizhou Power Supply Bureau Guangdong Power Grid Corporation Huizhou 516001 China
By analyzing the drawbacks of the conventional discrete-time model of the dual active bridge (DAB) converter, the full-state discrete-time model of the DAB converter is proposed, and the output-voltage-ripple analysis under different system parameters and working condition is conducted. The conventional discrete-time model of the DAB converter is based on the interval-by-interval iteration, which will miss many essential information of the state variables and cannot reflect the actual working condition of the converter. By analyzing the working principle of the converter, the proposed full-state discrete-time model can reveal all the crucial information of the state variables. Taking the output voltage as an example, the full-state discrete-time model can reveal the output-voltage information at the subinterval switching moment. Therefore, the output-voltage-ripple analysis is more accurate and conducive to improving system reliability. The experimental results also verify the proposed model and the analysis results.
高国庆, 雷万钧, 袁晓杰, 卫才猛, 崔耀. 双有源全桥变换器全状态离散迭代建模与输出电压纹波分析[J]. 电工技术学报, 2021, 36(2): 330-340.
Gao Guoqing, Lei Wanjun, Yuan Xiaojie, Wei Caimeng, Cui Yao. Full-State Discrete-Time Model and the Output-Voltage-Ripple Analysis of the Dual Active Bridge Converter. Transactions of China Electrotechnical Society, 2021, 36(2): 330-340.
[1] Zhao Biao, Song Qiang, Liu Wenhua, et al.Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system[J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4091-4106.
[2] Kheraluwala M N, Gascoigne R W, Divan D M, et al.Performance characterization of a high-power dual active bridge DC-to-DC converter[J]. IEEE Transa- ctions on Industry Applications, 1992, 28(6): 1294-1301.
[3] 苗璐, 林卫星, 姚良忠, 等. 多端口背靠背式直流-直流换流系统[J]. 中国电机工程学报, 2015, 35(5): 1024-1031.
Miao Lu, Lin Weixing, Yao Liangzhong, et al.Multiport back-to-back DC-DC converting systems[J]. Proceedings of the CSEE, 2015, 35(5): 1024-1031.
[4] 沙广林, 王聪, 程红, 等. 移相控制的双有源桥DC-DC变换器统一相量分析法[J]. 电工技术学报, 2017, 32(18): 175-185.
Sha Guanglin, Wang Cong, Cheng Hong, et al.Unified phasor analysis method for dual active bridge DC-DC converters with phase shift control[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(18): 175-185.
[5] 张明锐, 刘金辉, 金鑫. 应用于智能微网的SVPWM固态变压器研究[J]. 电工技术学报, 2012, 27(1): 90-97.
Zhang Mingrui, Liu Jinhui, Jin Xin.Research on the SVPWM solid state transformer applied in smart micro-grid[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 90-97.
[6] 张雪垠, 徐永海, 肖湘宁. 适用于中高压配电网的高功率密度谐振型级联 H 桥固态变压器[J]. 电工技术学报, 2018, 32(2): 310-321.
Zhang Xueyin, Xu Yonghai, Xiao Xiangning.A high power density resonance cascaded H-bridge solid-
7 state transformer for medium and high voltage distribution network[J]. Transactions of China Elec- trotechnical Society, 2018, 32(2): 310-321.
[7] Rico Secades M, García Llera D, López Corominas E R, et al. Designing dual-active bridge (DAB) converter for energy storage/recovery systems in a lighting smart grid context[J]. Workrooms Journal, 2014, 2: 1-20.
[8] 肖智明, 陈启宏, 张立炎. 电动汽车双向DC-DC变换器约束模型预测控制研究[J]. 电工技术学报, 2018, 33(增刊2): 239-248.
Xiao Zhiming, Chen Qihong, Zhang Liyan.Con- strained model predictive control for bidirectional DC-DC converter of electric vehicles[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(S2): 239-248.
[9] Bai Hua, Mi Chunting, Wang Chongwu, et al.The dynamic model and hybrid phase-shift control of a dual-active-bridge converter[C]//Conference of the IEEE Industrial Electronics Society, Orlando, United States, 2008: 2840-2845.
[10] Guacaneme J, Garcera G, Figueres E, et al.Dynamic modeling of a dual active bridge DC to DC converter with average current control and load-current feed-forward[J]. International Journal of Circuit Theory & Applications, 2015, 43(10): 1311-1332.
[11] Hengsi Q, Kimball J W.Generalized average modeling of dual active bridge DC-DC converter[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 2078-2084.
[12] Costinett D, Zane R, Maksimovic D.Discrete-time small-signal modeling of a 1MHz efficiency- optimized dual active bridge converter with varying load[C]//13th Workshop on Control and Modeling for Power Electronics (COMPEL), Doshisha University, Kyoto, 2012: 1-7.
[13] Shi Ling, Lei Wanjun, Li Zhuoqiang, et al.Bilinear discrete-time modeling and stability analysis of the digitally controlled dual active bridge converter[J]. IEEE Transactions on Power Electronics, 2017, 32(11): 8787-8799.
[14] Costinett D.Reduced order discrete time modeling of ZVS transition dynamics in the dual active bridge converter[C]//2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 2015: 365-370.
[15] 童安平, 杭丽君, 李国杰, 等. 基于离散迭代模型的DAB变换器等效电路研究[J]. 中国电机工程学
报, 2019, 39(4): 1138-1149.
16 Tong Anping, Hang Lijun, Li Guojie, et al.A discrete- time model based equivalent circuit of dab converter[J]. Proceedings of the CSEE, 2019, 39(4): 1138-1149.
[16] Dhople S V, Davoudi A, Domínguez-García A D, et al. A unified approach to reliability assessment of multiphase DC-DC converters in photovoltaic energy conversion systems[J]. IEEE Transactions on Power Electronics, 2012, 27(2): 739-751.
[17] Liu J C P, Poon N K, Pong B M H, et al. Low output ripple DC-DC converter based on an overlapping dual asymmetric half-bridge topology[J]. IEEE Transa- ctions on Power Electronics, 2007, 22(5): 1956-1963.
[18] Chiu H, Chen C, Tsai M, et al.A novel isolated buck converter with output voltage ripple reduction by a complementary square-wave scheme[C]//2011 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 2011: 1786-1790.
[19] Babaei E, Mahmoodieh M E S, Mahery H M. Operational modes and output-voltage-ripple analysis and design considerations of Buck-Boost DC-DC converters[J]. IEEE Transactions on Industrial Elec- tronics, 2012, 59(1): 381-391.
[20] Babaei E, Mahmoodieh M E S. Calculation of output voltage ripple and design considerations of SEPIC converter[J]. IEEE Transactions on Industrial Elec- tronics, 2014, 61(3): 1213-1222.
[21] Liu Shulin, Li Yan, Liu Li.Analysis of output voltage ripple of Buck DC-DC converter and its design[C]//2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, China, 2009: 112-115.
[22] 刘豹. 现代控制理论[M]. 2版. 北京: 机械工业出版社, 2004.