Study on Loss Characteristics of Three Core Armored Cable under Low-Frequency Transmission Mode Based on Electromagnetic, Thermal Coupling Principle
Liu Shili1, Luo Yingnan1, Liu Zongye2, Deng Jinsuo1, Cai Guowei1
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. State Key Lab of Advanced Power Transmission Technology Global Energy Interconnection Research Institute Co.Ltd Beijing 102209 China
Abstract:Accurately computing cable loss is one of the critical issues to improve the economics of submarine cables and realize the efficient transmission of deep-sea wind power. In this study, according to the submarine cable's actual laying conditions, a multi-physical coupling model of submarine cable is established based on the electromagnetic field and heat transfer field. This model can help to analyze the distribution of cable core current under low-frequency transmission mode. Based on this model,this paper studies induced voltage calculated by IEC standard, loss factor, and error of ampacity. The research shows that the average current density of the cable core deviates from the cable core center. The deviation distance increases with the increase of transmission frequency, which caused the sheath induced voltage and loss error calculated by IEC to change in the same direction. When the core radius is greater than 24mm, the sheath loss factor's error becomes more massive. When the cable core's cross-sectional area is 2 000 mm2, the ampacity error under fractional frequency and industrial frequency is about 10% and 15%, respectively. The calculation results lay a foundation for reasonable determination of the current carrying capacity of submarine cables.
刘士利, 罗英楠, 刘宗烨, 邓金锁, 蔡国伟. 基于电磁-热耦合原理的三芯铠装电缆在低频输电方式下的损耗特性研究[J]. 电工技术学报, 2021, 36(22): 4829-4836.
Liu Shili, Luo Yingnan, Liu Zongye, Deng Jinsuo, Cai Guowei. Study on Loss Characteristics of Three Core Armored Cable under Low-Frequency Transmission Mode Based on Electromagnetic, Thermal Coupling Principle. Transactions of China Electrotechnical Society, 2021, 36(22): 4829-4836.
[1] 李响, 韩民晓. 海上风电串联多端VSC-HVDC协调控制策略[J]. 电工技术学报, 2013, 28(5): 42-48. Li Xiang, Han Minxiao.A coordinated control strategy of series multi-terminal VSC-HVDC for offshore wind farm[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 42-48. [2] 姜楠. 深海风力发电技术的发展现状与前景分析[J]. 新能源进展, 2015, 3(1): 21-24. Jiang Nan.Analysis on status and prospect of wind power generation in deep sea[J]. Advances in New and Renewable Energy, 2015, 3(1): 21-24. [3] Wind Europe. Offshore wind in europe key trends and statistics2017 [EB/OL]. [2018-07-18]. https://windeurope. org/wp-content/uploads/files/about-wind/statistics/ WindEurope-Annual-Offshore-2017.pdf. [4] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771. Chi Yongning, Liang Wei, Zhang Zhankui, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771. [5] 杨悦, 李国庆. 基于VSC-HVDC的海上风电小干扰稳定控制[J]. 电工技术学报, 2016, 31(13): 101-110. Yang Yue, Li Guoqing.The small signal stability control of offshore wind farm based on VSC-HVDC[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 101-110. [6] 王秀丽, 张小亮, 宁联辉, 等. 分频输电在海上风电并网应用中的前景和挑战[J]. 电力工程技术, 2017, 36(1): 15-19. Wang Xiuli, Zhang Xiaoliang, Ning Lianhui, et al.Application prospects and challenges of fractional frequency transmission system in offshore wind power integration[J]. Electric Power Engineering Technology, 2017, 36(1): 15-19. [7] Chen Hao, Johnson M H, Aliprantis D C.Low-frequency AC transmission for offshore wind power[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2236-2244. [8] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31):5459-5466. Wang Xifan, WEI Xiaohui, Ning Lianhui, et al.Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466. [9] Ruddy J, Meere R, O'louchin C, et al. Design of VSC connected low frequency AC offshore transmission with long HVAC cables[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 960-970. [10] 邹宏亮, 孙云莲, 张弛, 等. 多回路电力电缆不同敷设方式对环流的影响[J]. 高电压技术, 2016, 42(8): 2426-2433. Zou Hongliang, Sun Yunlian, Zhang Chi, et al.Effects of different multi-loop laying ways on circulating current of power cable[J]. High Voltage Engineering, 2016, 42(8): 2426-2433. [11] 吕安强, 李永倩, 李静, 等. 光电复合海缆中光纤与导体温度关系的有限元分析方法[J]. 电工技术学报, 2014, 29(4): 91-96. Lü Anqiang, Li Yongqian, Li Jing, et al.Finite element analysis method for temperature relati-onship between conductor and optical fiber in optic-electric composite submarine cable[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 91-96. [12] 王鹤, 李兴宝, 路俊海, 等. 基于叠加原理的光纤复合低压电缆热路模型建模[J]. 电工技术学报, 2019, 34(7): 1381-1391. Wang He, Li Xingbao, Lu Junhai, et al.Simulation analysis of induced voltage on metal sheath of power cable based on finite element method[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1381-1391. [13] Zhang Yiyi, Chen Xiaoming, Zhang Heng, et al.Analysis on the temperature field and the ampacity of XLPE submarine HV cable based on electro-thermal-flow multiphysics coupling simulation[J]. Polymers, 2020, 12(4): 952. [14] 郝艳捧, 陈云, 阳林. 高压直流海底电缆电-热-流多物理场耦合仿真[J]. 高电压技术, 2017, 43(11): 3534-3542. Hao Yanpeng, Chen Yun, Yang Lin.Coupled simulation on electro-thermal-fluid multiple physical fields of HVDC submarine cable[J]. High Voltage Engineering, 2017, 43(11): 3534-3542. [15] 陆莹, 范明明, 刘刚, 等. 基于电磁-热-流耦合场的非开挖敷设方案的海底电缆载流量计算[J]. 广东电力, 2020, 33(5): 117-124. Lu Ying, Fan Mingming, Liu Gang, et al.Calculation of ampacity for submarine cables under trenchless laying method based on electromagnetic-thermal-flow coupled field[J]. Guangdong Electric Power, 2020, 33(5): 117-124. [16] 王航, 周文俊, 陈杰, 等. 波纹金属护套高压单芯电缆线芯护层互感的解析解[J]. 电工技术学报, 2020, 35(16): 3369-3376. Wang Hang, Zhou Wenjun, Chen Jie, et al.Analytical solution of the mutual inductance of a HV single conductor cable with corrugated metallic sheath[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3369-3376. [17] 高俊国, 于平澜, 李紫云, 等. 基于有限元法的电缆金属护套感应电压仿真分析[J]. 高电压技术, 2014, 40(3): 714-720. Gao Junguo, Yu Pinglan, Li Ziyun, et al.Simulation analysis of induced voltage on metal sheath of power cable based on finite element method[J]. High Voltage Engineering, 2014, 40(3): 714-720. [18] 刘英, 王磊, 曹晓珑. 双回路电缆护套环流计算及影响因素分析[J]. 高电压技术, 2007, 33(4): 143-146. Liu Ying, Wang Lei, Cao Xiaolong.Calculation of circulating current in sheaths of two-circuit arranged cables and analyses of influencing factors[J]. High Voltage Engineering, 2007, 33(4): 143-146. [19] 梁永春, 李彦明, 柴进爱, 等. 地下电缆群稳态温度场和载流量计算新方法[J]. 电工技术学报, 2007, 22(8): 185-190. Liang Yongchun, Li Yanming, Chai Jinai.A new method to calculate the steady-state temperature field and ampacity of underground cable system[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 185-190. [20] 牛海清, 郑文坚, 雷超平, 等. 基于有限元和粒子群算法的电缆周围土壤热特性参数估算方法[J].高电压技术, 2018, 44(5): 1557-1563. Niu Haiqing, Zheng Wenjian, Lei Chaoping, et al.estimation method for thermal parameters of soil around the cable based on finite element and particle swarm optimization[J]. High Voltage Engineering, 2018, 44(5): 1557-1563. [21] 曹惠玲, 王增强, 李雯靖, 等. 坐标组合法对直埋电缆与土壤界面温度场的数值计算[J]. 电工技术学报, 2003, 18(3): 59-63. Cao Huiling, Wang Zengqiang, Li Jingwen, et al.Numerical computation of temperature distribution of underground cables and soil with combina-torial coordinates[J]. Transactions of China Electrotechnical Society, 2003, 18(3): 59-63. [22] 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析[J]. 电力系统自动化, 2019, 43(5): 167-174. Huang Minghuang, Wang Xiuli, Liu Shenquan, et al.Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43(5): 167-174. [23] Fan Huimin, Xu Yunfei, Xiao Xiangning, et al.Operation characteristics of low frequency AC cable transmission system for urban grid[C]//2016 China International Conference on Electric Distribution (CICED), Xi'an, 2016: 1-6.