Solution of the Inverse Problem of “Low-Frequency Overvoltage Excitation to Response” for Electromagnetic Potential Transformers
Yang Ming1, Xiong Zhao1, Sima Wenxia1, Li Yongfu2, He Dongsheng3, Zou Binyang1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China; 2. State Grid Chongqing Electric Power Company Chongqing Electric Power Research Institute Chongqing 401123 China; 3. China National Quality Supervision and Testing Center for Smart Grid Transmission and Distribution Equipment Dongguan 523325 China
Abstract:Electromagnetic potential transformer(PT)is a piece of critical voltage measurement equipment widely used in power systems. However, low-frequency electromagnetic transient voltages may excite the core of PT to be saturated, resulting in a significant increase in measurement error. By solving the inverse problem of “low-frequency overvoltage excitation to response” of PT, its primary excitation voltage can be calculated based on the secondary response voltage. Based on the principle of electromagnetic duality, a forward circuit model considering the deep saturation of the iron core and its parameters extraction method are proposed in this paper, then an inverse mathematical model is constructed, which solves the inverse problem of “low-frequency overvoltage excitation to response” of PT. The proposed method is validated by simulations and experiments on a 10kV PT. Results show that the proposed method can significantly decrease the error of the PT from 65.6% to 10%, when it suffers from deep saturation caused by low-frequency transients. The proposed method solves the problem of distortion of the secondary voltage of the PT under the excitation of low-frequency transients.
杨鸣, 熊钊, 司马文霞, 李永福, 何东升, 邹滨阳. 电磁式电压互感器“低频过电压激励-响应”逆问题求解[J]. 电工技术学报, 2021, 36(17): 3605-3613.
Yang Ming, Xiong Zhao, Sima Wenxia, Li Yongfu, He Dongsheng, Zou Binyang. Solution of the Inverse Problem of “Low-Frequency Overvoltage Excitation to Response” for Electromagnetic Potential Transformers. Transactions of China Electrotechnical Society, 2021, 36(17): 3605-3613.
[1] 江陶然, 刘希喆. 基于拓扑变换的非接触式电压传感器[J]. 电工技术学报, 2019, 34(1): 153-159. Jiang Taoran, Liu Xizhe.Non-contact voltage sensor based on topology transformation[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 153-159. [2] 王迎迎, 袁建生. 铁心材料饱和磁化强度的偏差对求解变压器涌流的影响[J]. 电工技术学报, 2019, 34(12): 2452-2459. Wang Yingying, Yuan Jiansheng.Influence of the error of saturation magnetization of core material on the solution of transformer inrush current[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2452-2459. [3] 陈汝斯, 林涛, 毕如玉, 等. 基于有限量测数据的主动配电网电压暂降源精确定位策略[J]. 电工技术学报, 2019, 34(增刊1): 312-320. Chen Rusi, Lin Tao, Bi Ruyu, et al.Strategy to precisely locate voltage sag source in active distribution grid with data measured by limited power quality observations[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 312-320. [4] 刘科研, 盛万兴, 张东霞, 等. 智能配电网大数据应用需求和场景分析研究[J]. 中国电机工程学报, 2015, 35(2): 287-293. Liu Keyan, Sheng Wanxing, Zhang Dongxia, et al.Big data application requirements and scenario analysis in smart distribution network[J]. Proceedings of the CSEE, 2015, 35(2): 287-293. [5] 梁贵书, 王雁超. 考虑频变参数的油浸式变压器绕组分数阶传输线模型[J]. 电工技术学报, 2016, 31(17): 178-186. Liang Guishu, Wang Yanchao.Fractional transmission line model of oil-immersed transformer winding considering frequency-dependent parameters[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 178-186. [6] 张重远, 唐帅, 梁贵书, 等. 基于电磁型电压互感器传输特性的过电压在线监测方法[J]. 中国电机工程学报, 2011, 31(22): 142-148. Zhang Chongyuan, Tang Shuai, Liang Guishu, et al.On line over-voltage monitoring method based on transmission characteristics of electromagnetic voltage transformer[J]. Proceedings of the CSEE, 2011, 31(22): 142-148. [7] 李春艳, 周念成, 王强钢, 等. 基于软启动的变压器励磁涌流抑制方法[J]. 电工技术学报, 2020, 35(17): 3640-3651. Li Chunyan, Zhou Niancheng, Wang Qianggang, et al.a method to eliminate transformer inrush currents using soft-starter-based controlled energization[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3640-3651. [8] IEEE Working Group.Modeling and analysis of system transients using digital programs[R]. IEEE Working Group 15.08. 09, 1998. [9] 闫立志. 基于电磁式电压互感器的过电压在线监测系统的研究[D]. 北京: 华北电力大学, 2012. [10] 李慧奇, 李晓孟, 李金忠, 等. 计及铁心损耗和磁滞效应改进的变压器模型[J]. 电工技术学报, 2016, 31(21): 196-202. Li Huiqi, Li Xiaomeng, Li Jinzhong, et al.An improved transformer model considering of the losses and hysteresis of the core[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 196-202. [11] CIGRE Working Group.Guidelines for representation of network elements when calculating transients[R]. CIGRE Working Group 33. 02, 1990. [12] 张荣伦, 王帅, 穆海宝, 等. 大型电力变压器损耗带电测试技术研究[J]. 电工技术学报, 2019, 34(4): 683-692. Zhang Ronglun, Wang Shuai, Mu Haibao, et al.The on-site method for the loss characteristic in power transformer[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 683-692. [13] Jazebi S, De León F, Farazmand A, et al.Dual reversible transformer model for the calculation of low-frequency transients[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2509-2517. [14] Gustavsen B, De Silva H M J. Inclusion of rational models in an electromagnetic transients program: y-parameters, z-parameters, s-parameters, transfer functions[J]. IEEE Transactions on Power Delivery, 2013, 28(2): 1164-1174. [15] Jazebi S, De León F.Experimentally validated reversible single-phase multiwinding transformer model for the accurate calculation of low-frequency transients[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 193-201. [16] De León F, Farazmand A, Joseph P.Comparing the T and π equivalent circuits for the calculation of transformer inrush currents[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2390-2398. [17] Neves W L A, Dommel H W. On modelling iron core nonlinearities[J]. IEEE Transactions on Power Systems, 1993, 8(2): 417-425. [18] Zirka S E, Moroz Y I, Arturi C M, et al.Topology-correct reversible transformer model[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2037-2045. [19] De León F, Jazebi S, Farazmand A.Accurate measurement of the air-core inductance of iron-core transformers with a non-ideal low-power rectifier[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 294-296. [20] 司马文霞, 刘永来, 杨鸣, 等. 考虑铁心深度饱和的单相双绕组变压器改进π模型[J]. 中国电机工程学报, 2018, 38(24): 7131-7140, 7439. Sima Wenxia, Liu Yonglai, Yang Ming, et al.An improved π model for single-phase two winding transformers considering deep saturation of the iron core[J]. Proceedings of the CSEE, 2018, 38(24): 7131-7140, 7439. [21] GB/T 22071.2—2017互感器试验导则第2部分: 电磁式电压互感器B/T 22071.2—2017互感器试验导则第2部分: 电磁式电压互感器[S]. 2017. [22] 王维博, 董蕊莹, 曾文入, 等. 基于改进阈值和阈值函数的电能质量小波去噪方法[J]. 电工技术学报, 2019, 34(2): 409-418. Wang Weibo, Dong Ruiying, Zeng Wenru, et al.A wavelet de-noising method for power quality based on an improved threshold and threshold function[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 409-418.