Simulation and Analysis of Rail Cooling Based on Electromagnetic and Fluid Field Coupling
Gu Gang1,2, Wu Lizhou2, Geng Hao2, Zhao Xi2
1. College of Electrical Engineering Naval University of Engineering Wuhan 430033 China 2. 713 Research Institute of China Shipbuilding Industry Corporation Zhengzhou 450015 China
Abstract:In the successive progress of the rail accelerator, too high local temperature rise in the rails will seriously affect its structural strength, it is necessary to analyze it’s temperature and cooling. Begin with the analysis of the dynamic characteristics of the rail accelerator, the key problems such as the heat source loading of the rails and the time step difference of multiple accelerations were solved. Based on programming of ANSYS-APDL, the electromagnetic-fluid coupling simulation analysis of rails’ cooling was realized. Without Water Cooling, after 5 successive accelerations the maximum temperature of the rails has exceeded the copper softening temperature by 400℃.By analyzing the sensitivity of the cooling water parameters to the cooling effect, the 50% volume concentration of ethylene glycol water solution was selected as the cooling solution. After 7 consecutive accelerations, the maximum temperature of the cooling solution and the rails do not increase, and the highest temperature of the rails is 308.7℃, which do not exceed the softening temperature of the copper material. The simulation method and results can be used to guide the thermal management of the rail accelerator.
古刚, 吴立周, 耿昊, 赵玺. 基于电磁-流场耦合的轨道冷却仿真分析[J]. 电工技术学报, 2020, 35(17): 3601-3608.
Gu Gang, Wu Lizhou, Geng Hao, Zhao Xi. Simulation and Analysis of Rail Cooling Based on Electromagnetic and Fluid Field Coupling. Transactions of China Electrotechnical Society, 2020, 35(17): 3601-3608.
[1] 杨玉东, 王建新, 薛文. 轨道炮速度趋肤效应的分析与仿真[J]. 强激光与粒子束, 2011, 23(7): 1965-1967. Yang Yudong, Wang Jianxin, Xue Wen.Simulation and analysis of velocity skin effect of railgun[J]. High Power Laser and Particle Beams, 2011, 23(7): 1965-1967. [2] 袁建生, 李军, 左鹏, 等. 不同截面形状轨道的电磁炮电流分布特性研究[C]//2011中国电工技术学会学术年会论文集, 贵阳, 2011: 65-71. Yuan Jiansheng, Li Jun, Zuo Peng, et al.Study on the current distribution characteristics of electromagnetic gun with different cross-section of rails[C]//2011 Proceedings of the China Electrotechnical Society: Guiyang, 2011: 65-71. [3] 刘旭堃, 于歆杰, 刘秀成, 等. 电磁轨道炮运行阶段系统发射效率和电枢出膛动能研究[J]. 电工技术学报, 2017, 32(3): 210-217. Liu Xukun, Yu Xinjie, Liu Xiucheng, et al.Researches on the system launch efficiency and the armature muzzle kinetic energy of a constructed electromagnetic railgun[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 210-217. [4] Bayati M S, Keshtkar A.Novel study of the rail’s geometry in the electromagnetic launcher[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1652-1656. [5] Tan Sai, Lu Junyong, Li Bai, et al.A new finite-element method to deal with motion problem of electromagnetic rail launcher[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1374-1379. [6] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4): 1052-1064. Li Jun, Yan Ping, Yuan Weiqun.Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064. [7] Trevor W, Francis S.The effect of current and speed on perimeter erosion in recovered armatures[J]. IEEE Transactions on Magnetics, 2005, 41(1): 448-452. [8] Kerrisk J F.Electrical and thermal modeling of railguns[J]. IEEE Transactions on Magnetics, 1984, 20(2): 399-402. [9] Johnson D E, Bauer D P.The effect of rail resistance on railgun efficiency[J]. IEEE Transactions on Magnetics, 1989, 25(1): 271-276. [10] Nearing J C, Huerta M A.Skin and heating effets of railgun current[J]. IEEE Transactions on Magnetics, 1989, 22(6): 1561-1566. [11] Hsieh K T.A Lagrangian formlation for mechanically, thermally coupled electromagnetic diffusive processes with moving conductors[J]. IEEE Transactions on Magnetics, 1995, 31(1): 605-609. [12] 金文龙, 雷彬, 张倩, 等. 电磁轨道炮热生成机理及温度场数值仿真[J]. 火炮发射与控制学报, 2012, 24(4): 9-12. Jin Longwen, Lei Bin, Zhang Qian, et al.Thermal generation mechanism and numerical simulation of temperature field in electromagnetic railgun[J]. Journal of Artillery Launching and Control, 2012, 24(4): 9-12. [13] 李强, 范长增, 贾元智, 等. 电磁轨道炮导轨和电枢中的焦耳热分析[J]. 弹道学报, 2006, 18(4): 38-40. Li Qiang, Fan Changzeng, Jia Yuanzhi, et al.Analysis of joule heating in rail and armature of electromagnetic railgun[J]. Journal of Ballistics, 2006, 18(4): 38-40. [14] 李小将, 万敏, 王志恒, 等. 电磁轨道炮温度场与热应力数值仿真[J]. 火力与指挥控制, 2017, 42(2): 336-340. Li Xiaojiang, Wan Min, Wang Zhiheng, et al.Numerical simulation of temperature field and thermal stress of electromagnetic railgun[J]. Fire and Command Control, 2017, 42(2): 336-340. [15] 李鹤, 雷彬, 吕庆敖, 等. 电磁轨道炮电枢接触界面温度场仿真研究[J]. 润滑与密封, 2012, 37(11): 22-26. Li He, Lei Bin, Lü Qingao, et al.Simulation of temperature distribution on contact surface of armature for electromagnetic railgun[J]. Lubrication Engineering, 2012, 37(11): 22-26. [16] 林庆华, 栗保明. 电磁轨道炮瞬态温度场的数值模拟[J]. 工程热物理学报, 2017, 38(1): 149-154. Lin Qinghua, Li Baoming.Numerical simulation of transient temperature field in the electromagnetic railgun[J]. Journal of Engineering Thermophysics, 2017, 38(1): 149-154. [17] 蒋晓东, 张凤阁, 周党生, 等. 双定子笼障转子无刷双馈发电机冷却空气流变特性数值分析[J].电工技术学报, 2019, 34(3): 466-473. Jiang Xiaodong, Zhang Fengge, Zhou Dangsheng, et al.Numerical analysis of cooling air flow characteristic for double stator cage-barrier rotor brushless doubly-fed generator[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 466-473. [18] 田振国, 安雪云. 复合型电磁轨道的多物理场耦合分析[J]. 火炮发射与控制学报, 2017, 38(3): 1-5. Tian Zhenguo, An Xueyun.Multi-physical field coupling analysis of composite electromagnetic rails[J]. Journal of Artillery Launching and Control, 2017, 38(3): 1-5. [19] 王小飞, 代颖, 罗建. 基于流固耦合的车用永磁同步电机水道设计与温度场分析[J].电工技术学报, 2019, 34(增刊1): 22-29. Wang Xiaofei, Dai Ying, Luo Jian.Waterway design and temperature field analysis of vehicle permanent magnet synchronous motor based on fluid-solid coupling[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 22-29. [20] 吴柏禧, 万珍平, 张昆, 等. 考虑温度场和流场的永磁同步电机折返型冷却水道设计[J]. 电工技术学报, 2019, 34(11): 2306-2313. Wu Boxi, Wan Zhenping, Zhang Kun, et al.Design of reentrant cooling channel in permanent magnet synchronous motor considering temperature field and flow field[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2306-2313. [21] 常馨月, 于歆杰, 刘旭堃. 一种实现电枢出膛速度控制的电磁轨道炮脉冲电源触发策略[J]. 电工技术学报, 2018, 33(10): 2261-2266. Chang Xinyue, Yu Xinjie, Liu Xukun.A velocity-controlling triggering strategy of capacitive pulsed power supply electromagnetic railgun system[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2261-2266. [22] 邢彦昌, 吕庆敖, 陈建伟, 等. 轨道炮不同激励电流下的发射特性对比分析[J]. 火力与指挥控制, 2019, 44(11): 58-60. Xing Yanchang, Lü Qingao, Chen Jianwei, et al.Comparative analysis of launching characteristic for railgun with different excitation current[J]. Fire Control & Command Control, 2019, 44(11): 58-60.