Research Progress in the UV-Initiated Polyethylene Cross-Linking Technology
Li Houyu, Li Changming, Sun Weifeng
School of Electrical and Electronic Engineering Harbin University of Science and Technology Key Laboratory of Engineering Dielectrics and Its Application Ministry of Education Heilongjiang Provincial Key Laboratory of Dielectric Engineering Harbin 150080 China
Abstract:Crosslinked polyethylene (XLPE) insulated cable prospects in a wide range of applications for high voltage and ultra-high voltage. The UV-initiated cross-linking technology is expected to substitute peroxide cross-linking technology and become the fundamental process of a new generation ultra-high voltage XLPE cable in the fields of high voltage power cable and submarine cable due to its simple irradiation equipment, low capital construction cost, high production efficiency and long continuous production time. In the present paper, the essential mechanism and the latest research progress of UV initiated cross-linking technology for XLPE insulating cable fabrication are systematically reviewed, investigating the kinetic and cross-linking processes in the UV-initiated photochemical reaction of polyethylene, and especially analyzing the electrical properties of UV-crosslinked polyethylene insulating materials. The analysis of UV-initiated cross-linking schemes and the prospective of UV XLPE insulation medium are also represented in high of interest, making it important significance for the development of high voltage insulation materials and new polymer synthesis technology.
李厚玉, 李长明, 孙伟峰. 紫外光引发聚乙烯交联技术研究进展[J]. 电工技术学报, 2020, 35(15): 3356-3367.
Li Houyu, Li Changming, Sun Weifeng. Research Progress in the UV-Initiated Polyethylene Cross-Linking Technology. Transactions of China Electrotechnical Society, 2020, 35(15): 3356-3367.
[1] Orton H.Power cable technology review[J]. High Voltage Engineering, 2015, 41(4): 1057-1067. [2] Zhou Yao, Peng Simin, Hu Jun, et al.Polymeric insulation materials for HVDC cables: development, challenges and future perspective[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1308-1318. [3] 杜伯学, 李忠磊, 杨卓然, 等. 高压直流交联聚乙烯电缆应用与研究进展[J]. 高电压技术, 2017, 43(2): 344-354. Du Boxue, Li Zhonglei, Yang Zhuoran, et al.Application and research progress of HVDC XLPE cables[J]. High Voltage Engineering, 2017, 43(2): 344-354. [4] 钟力生, 任海洋, 曹亮, 等. 挤包绝缘高压直流电缆的发展[J]. 高电压技术, 2017, 43(11): 3473-3489. Zhong Lisheng, Ren Haiyang, Cao Liang, et al.Development of high voltage direct current extruded cables[J]. High Voltage Engineering, 2017, 43(11): 3473-3489. [5] 唐炬, 潘成, 王邸博, 等. 高压直流绝缘材料表面电荷积聚研究进展[J]. 电工技术学报, 2017, 32(8): 10-21. Tang Ju, Pan Cheng, Wang Dibo, et al.Development of studies about surface charge accumulation on insulating material under HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 10-21. [6] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3770. Chi Yongning, Liang Wei, Zhang Zhankui, et al.An overview on key technologies regarding power transmission and gridintegration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3770. [7] 李亚莎, 代亚平, 花旭, 等. 杂质对交联聚乙烯电缆内部电场和空间电荷分布影响[J]. 电工技术学报, 2018, 33(18): 4366-4371. Li Yasha, Dai Yaping, Hua Xu, et al.The influence of impurities on electric field and space charge distribution in XLPE cable[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4366-4371. [8] 钟琼霞, 兰莉, 吴建东, 等. 交联副产物对交联聚乙烯中空间电荷行为的影响[J]. 中国电机工程学报, 2015, 35(11): 2903-2910. Zhong Qiongxia, Lan Li, Wu Jiandong, et al.The influence of cross-linked by-products on space charge behaviour in XLPE[J]. Proceedings of the CSEE, 2015, 35(11): 2903-2910. [9] 王以田, 郑晓泉, Chen G, 等. 聚合物聚集态和残存应力对交联聚乙烯中电树枝的影响[J]. 电工技术学报, 2004, 19(7): 44-48. Wang Yitian, Zheng Xiaoquan, Chen G, et al.Influence of polymer congregating state and survival mechanical stress to electrical treeing in XLPE[J]. Transactions of China Electrotechnical Society, 2004, 19(7): 44-48. [10] Mazzanti G, Marzinotto M.Extruded cables for high voltage direct current transmission[M]. Piseataway NJ: Wiley IEEE Press, 2013. [11] Gregory B.Cable technology and applications in the 21st century[J]. IEEE Power Engineering Review, 2000, 20(9): 6-7. [12] Oster G, Oster G K, Moroson H.Ultraviolet induced crosslinking and grafting of solid high polymers[J]. Journal of Polymer Science, 1959, 34(127): 671-684. [13] Oster G.Crosslinking of polyethylene with selective wavelengths of ultraviolet light[J]. Journal of Polymer Science, 1956, 22(100): 185-185. [14] Charlesby A, Grace C S, Pilkington F B.Crosslinking of polyethylene and paraffins by ultra-violet radiation in the presence of sensitizers[J]. Proceedings of the Royal Society A, 1962, 268(1333): 205-221. [15] Kachan A A.New sensitive indicator of ultraviolet radiation[J]. Gigienai Sanitaria, 1957, 22(1): 69-70. [16] Kaurkova G K, Kachan A A, Kornev K A, et al.Radiational chemical crosslinking of polyethylene[J]. Polymer Science U.S.S.R., 1965, 7(1): 199-200. [17] Yan Qing, Xu Wenying, Rånby B.Photoinitiated crosslinking of low density polyethylene: II. morphology and properties[J]. Polymer Engineering and Science, 2010, 31(22): 1567-1571. [18] Zamotaev P V, Litsov N J, Kachan A A.Photochemical reactions of 9,10-anthraquinone and some of its derivatives in polyethylene[J]. Polymer Photochemistry, 1986, 7(2): 139-152. [19] Horie K, Ando H, Mita I.Photochemistry in polymer solids. 8. Mechanism of photoreaction of benzophenone in poly(vinyl alcohol)[J]. Macromolecules, 1987, 20(1): 54-58. [20] Yang Qing, Xu Wenying, Rånby B.Photoinitiated crosslinking of low density polyethylene I: reaction and kinetics[J]. Polymer Engineering and Science, 1991, 31(22): 1561-1566. [21] Qu Baojun, Xu Yunhua, Shi Wenfang, et al.Photo- initiated crosslinking of low-density polyethylene. 7. Initial radical reactions with model compounds studied by spin-trapping ESR spectroscopy[J]. Macromolecules, 1992, 25(20): 5220-5224. [22] Qu Baojun.Recent developments in photoinitiated crosslinking of polyethylene and its industrial applications[J]. Chinese Journal of Polymer Science, 2001, 19(2): 189-207. [23] Qu Baojun, Rånby B.Photocrosslinking of low density polyethylene. II. Structure and morphology[J]. Journal of Applied Polymer Science, 1993, 48(4): 744-749. [24] Qu Baojun, Rånby B.Photocrosslinking of low density polyethylene. III. Supermolecular structure studied by SALS[J]. Journal of Applied Polymer Science, 1993, 49(10): 1799-1807. [25] 瞿保钧, 吴强华. 聚乙烯光引发交联及其工业应用研究的新进展[J]. 高等学校化学学报, 2000, 21(8): 1318-1324. Qu Baojun, Wu Qianghua.New development in photoinitiated crosslinking of polyethylene and its industrial applications[J].Chemical Journal of Chinese Universities, 2000, 21(8): 1318-1324. [26] 鲍文波, 马树军, 贾振山, 等. 紫外光辐照交联聚乙烯在电缆行业中的应用及进展[J]. 电线电缆, 2009, 4(4): 4-7. Bao Wenbo, Ma Shujun, Jia Zhenshan, et al.Application and development of UV irradiated XLPE in the cable industry[J]. Electric Wire and Cable, 2009, 4(4): 4-7. [27] 路义萍, 唐佳东, 赵洪, 等. 低压电缆紫外光交联辐照箱通风冷却研究[J]. 哈尔滨理工大学学报, 2013, 18(1): 45-50. Lu Yiping, Tang Jiadong, Zhao Hong, et al.Study of ventilation cooling for an irradiation box of low-voltage cable ultraviolet crosslinking[J]. Journal of Harbin University of Science and Technology, 2013, 18(1): 45-50. [28] Ye Lie, Wu Qianghua, Qu Baojun.Photocrosslinking and related properties of intumescent flame-retardant LLDPE/ EVA/IFR blends[J]. Polymers for Advanced Technologies, 2012, 23(5): 858-865. [29] 马宝红, 鲍文波, 姜国发, 等. 紫外光与硅烷交联对聚乙烯电缆材料性能的影响[J]. 塑料工业, 2013, 41(6): 113-116. Ma Baohong, Bao Wenbo, Jiang Guofa, et al.Effects of UV-light and silane crosslinking on the properties of polyethylene cable materials[J]. China Plastics Industry, 2013, 41(6): 113-116. [30] 徐志前, 吕建平, 谢飞, 等. 紫外光辐射交联甲基乙烯基硅橡胶/线性低密度聚乙烯热塑弹性体的性能[J]. 高分子材料科学与工程, 2013, 29(10): 72-75. Xu Zhiqian, Lü Jianping, Xie Fei, et al.Effects of UV-irradiation on the properties of MVQ/LLDPE thermoplastic elastomer[J]. Polymer Materials Science and Engineering, 2013, 29(10): 72-75. [31] 夏紫阳, 王大威, 姚小龙, 等. 紫外交联PP/PE复合材料的制备与力学性能研究[J]. 胶体与聚合物, 2017, 35(2): 15-18. Xia Ziyang, Wang Dawei, Yao Xiaolong, et al.Preparation of ultraviolet crosslinking PP/PE composite and mechanical properties research[J]. Chinese Journal of Colloid and Polymer, 2017, 35(2): 15-18. [32] 陈俊岐, 赵洪, 胥智勇, 等. 紫外光交联线性低密度聚乙烯水树老化特性研究[J]. 中国电机工程学报, 2018, 38(7): 2188-2197. Chen Junqi, Zhao Hong, Xu Zhiyong, et al.Research on water tree aging of UV-photoinitiated crosslinking of linear low density polyethylene[J]. Method Proceedings of the CSEE, 2018, 38(7): 2188-2197. [33] Fu Yuwei, Sun Weifeng, Wang Xuan.UV-initiated crosslinking reaction mechanism and electrical breakdown performance of crosslinked polyethylene[J]. Polymers, 2020, 12(2): 420. [34] Yan Qing, Rånby B.Photoinitiated crosslinking of low density polyethylene. V: orientation in stretched samples[J]. Polymer Engineering and Science, 1992, 32(19): 1433-1439. [35] Chen Yonglie, Rånby B.Photocrosslinking of polyethy lene. I. Photoinitiators, crosslinking agent, and reaction kinetics[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1989, 27(12): 4051-4075. [36] Yan Qing.Photoinitiated crosslinking of low density polyethylene. IV: continuous extrusion application[J]. Polymer Engineering and Science, 1992, 32(12): 831-835. [37] Chen Yonglie, Rånby B.Photocrosslinking of polyethy lene. II. Properties of photocrosslinked polyethylene[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1989, 27(12): 4077-4086. [38] Zamotaev P V, Chodak I.Photocrosslinking of oriented ultra-high molecular weight polyethylene[J]. Macro- molecular Materials and Engineering, 1993, 210(1): 119-128. [39] Qu Baojun, Shi Wenfang, Rånby B.Photocrosslinking of LDPE and its application for wiresand cables[J]. Journal of Photopolymer Science and Technology, 1989, 2(2): 269-276. [40] 瞿保钧, 施文芳, Rånby B.聚乙烯熔融态光交联的研究[J]. 高分子材料科学与工程, 1990, 6(6): 37-43. Qu Baojun, Shi Wenfang, Rånby B.Studies of photo crosslinking of polyethylene in the melt[J]. Polymeric Materials Science and Engineering, 1990, 6(6): 37-43. [41] Wu Qianghua, Qu Baojun.Photoinitiating characteristics of benzophenone derivatives as new initiators in the photocrosslinking of polyethylene[J]. Polymer Engineering and Science, 2001, 41(7): 1220-1226. [42] Yao Dahong, Qu Baojun, Wu Qianghua.Photoinitiated crosslinking of ethylene-vinyl acetate copolymers and characterization of related properties[J]. Polymer Engineering and Science, 2007, 47(11): 1761-1767. [43] 付雨微, 王暄, 吴强华, 等. 新型UV XLPE电缆绝缘材料的交联及电学特性[J]. 电工技术学报, 2018, 33(23): 5564-5572. Fu Yuwei, Wang Xuan, Wu Qianghua, et al.Crosslinked and electrical characteristics for cable insulating material of new UV XLPE[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5564-5572. [44] Rånby B.Photochemical modification of polymers photo-crosslinking, surface photografting, and lamination[J]. Material Research Innovations, 1998, 38(8): 1229-1243. [45] Lawton E J, Balwit J S, Powell R S.Effect of physical state during the electron irradiation of hydrocarbon polymers. Part I. The influence of physical state on reactions occurring in polyethylene during and following the irradiation[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1958, 32(125): 257-275. [46] Allen N S.Mechanisms of photophysical processes and photochemical reactions in polymers (theory and applications)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1988, 44(1): 124. [47] 鲍文波, 马树军, 贾振山, 等. 10 kV紫外光辐照交联聚乙烯电力电缆新技术[J]. 电线电缆, 2008, 4(4): 1-4. Bao Wenbo, Ma Shujun, Jia Zhenshan, et al.A new technology for 10 kV UV-irradiated XLPE power cables[J]. Electric Wire and Cable, 2008, 4(4): 1-4. [48] Shamekhi M A, Jafarib S H, Khonakdarc H A, et al.Preparation and characterisation of UV irradiation cross-linked LDPE/EVA blends[J]. Plastics Rubber and Composites, 2010, 39(10): 431-436. [49] Chen Junqi, Zhao Hong, Xu Zhiyong, et al.Accelerated water tree aging of crosslinked polyethylene with different degrees of crosslinking[J]. Polymer Testing, 2016, 56: 83-90. [50] Sun Kun, Chen Junqi, Zhao Hong, et al.Dynamic thermomechanical analysis on water tree resistance of crosslinked polyethylene[J]. Materials, 2019, 12(5): 746. [51] 孙麒富. 紫外光交联聚乙烯空间电荷与电导特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2016. [52] 林文莉. 线性低密度聚乙烯及其紫外光辐照交联材料老化特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2017. [53] Qiu Peng, Chen Junqi, Sun Weifeng, et al.Improved DC dielectric performance of photon-initiated crosslinking polyethylene with TMPTMA auxiliary agent[J]. Materials, 2019, 12(21): 3540. [54] Fu Yuwei, Wang Xuan, Zhao Wei, et al.Effects of new photoinitiator on dielectric properties of UV irradiation XLPE[C]//IEEE 11th International Conference on the Properties and Applications of Dielectric Material, Sydney, NSW, Australia, 2015: 536-539. [55] Zhao Xindong, Sun Weifeng, Zhao Hong.Enhanced insulation performances of crosslinked polyethylene modified by chemically grafting chloroacetic acid allyl ester[J]. Polymers, 2019, 11(4): 592. [56] 付一峰, 陈俊岐, 赵洪, 等. 交联聚乙烯接枝氯乙酸烯丙酯直流介电性能[J]. 电工技术学报, 2018, 33(18): 4372-4381. Fu Yifeng, Chen Junqi, Zhao Hong, et al.DC dielectric properties of crosslinking polyethylene grafted chloroacetic acid allyl ester[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4372-4381. [57] Li Zhongyuan, Sun Weifeng, Zhao Hong.Significantly improved electrical properties of photo-initiated auxiliary crosslinking EPDM used for cable termination[J]. Polymers, 2019, 11(12): 2083. [58] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 183-195. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 183-195. [59] Cheng Liangliang, Zhang Yong, Shi Wenfang.Photo- initiating behavior of benzophenone derivatives covalently bonded tertiary amine group for UV-curing acrylate systems[J]. Polymers for Advanced Technologies, 2012, 23(3): 669-676. [60] Cheng Liangliang, Zhang Yong, Shi Wenfang.Photoinitiating characteristics of benzophenone derivatives as type II macromolecular photoinitiators used for UV curable resins[J]. Chemical Research in Chinese Universities, 2011, 27(1): 145-149. [61] Huang Xingyi, Zhang Jun, Jiang Pingkai.Thermoplastic insulation materials for power cables: history and progress[J]. High Voltage Engineering, 2018, 44(5): 1377-1398. [62] Andritsch T, Vaughan A, Stevens G C.Novel insulation materials for high voltage cable systems[J]. IEEE Electrical Insulation Magazine, 2017, 33(4): 27-33. [63] Teyssedre G, Laurent C.Advances in high-field insulating polymeric materials over the past 50 years[J]. IEEE Electrical Insulation Magazine, 2013, 29(5): 26-36. [64] Vahedy V.Polymer insulated high voltage cables[J]. IEEE Electrical Insulation Magazine, 2006, 22(3): 13-18. [65] Marek A A, Verney V.Rheological behavior of polyolefins during UV irradiation at high temperature as a coupled degradative process[J]. European Polymer Journal, 2015, 72: 1-11. [66] Horrocks A R, Liu Mingguang.UV stabilising synergies between carbon black and hindered light stabilisers in linear low density polyethylene films[J]. Macromolecular Symposia, 2003, 202(1): 199-220. [67] He Guangjian, Tzoganakis C.A UV-initiated reactive extrusion process for production of controlled rheology polypropylene[J]. Polymer Engineering and Science, 2011, 51(1): 151-157. [68] Andrews T, Hampton R N, Smedberg A, et al.The role of degassing in XLPE cable manufacture[J]. IEEE Electrical Insulation Magazine, 2006, 22(6): 5-16. [69] Liu M, Horrocks A R.Effect of carbon black on UV stability of LLDPE films under artificial weathering conditions[J]. Polymer Degradation and Stability, 2002, 75(3): 485-499. [70] Javadi Y, Hosseini M S, Aghjeh M K R. The effect of carbon black and HALS hybrid systems on the UV stability of high-density polyethylene (HDPE)[J]. Iranian Polymer Journal, 2014, 23(10): 793-799.