Power Transfer and Control of Wireless Charging System Based on an Arc Coil Structure
Cai Chunwei1, Wu Shuai1,2, Zhang Yanyu1, Liu Jinquan1, Yang Shiyan2
1. School of New Energy Harbin Institute of Technology-Weihai Weihai 264209 China; 2. School of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China
Abstract:This paper develops a wireless charging system using an arc coil and secondary side control method based on magnetically coupled resonance technology, which has certain reference to the wireless charging technology of underwater autonomous vehicle (AUV). Firstly, a magnetic coupler featuring a small-volume and lightweight receiver is proposed that can be adapted to the special arc shape of AUVs. The performance of the magnetic coupler is analyzed by finite element analysis and experiments. It is found that the magnetic coupler has good self-concentrating ability of magnetic field, and the coupling coefficient is high to 0.53. Secondly, the power transfer and control topology with reliable operation and secondary side control is designed, the regulating effect of the Buck converter on the charging voltage and current by the duty cycle is analyzed, and the closed-loop design is completed. Finally, an experimental system is built to verify the proposal. The results show that the 48V battery (11A constant current/54.1V constant voltage) can be charged normally. The maximum charging power of the system is 600W with an efficiency of 88.3%.
蔡春伟, 武帅, 张言语, 刘金泉, 杨世彦. 基于弧形线圈结构的无线充电系统能量传输与控制[J]. 电工技术学报, 2020, 35(14): 2959-2968.
Cai Chunwei, Wu Shuai, Zhang Yanyu, Liu Jinquan, Yang Shiyan. Power Transfer and Control of Wireless Charging System Based on an Arc Coil Structure. Transactions of China Electrotechnical Society, 2020, 35(14): 2959-2968.
[1] Carreras M, Hernández J D, Vidal E, et al.Sparus II AUV-a hovering vehicle for seabed inspection[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 344-355. [2] Eriksen C C, Osse T J, Light R D, et al.Seaglider: a long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436. [3] Page B R, Mahmoudian N.Simulation-driven optimi- zation of underwater docking station design[J]. IEEE Journal of Oceanic Engineering, 2020, 45(2): 404-413. [4] 吴旭升, 孙盼, 杨深钦, 等. 水下无线电能传输技术及应用研究综述[J]. 电工技术学报, 2019, 34(8): 5-14. Wu Xusheng, Sun Pan, Yang Shenqin, et al.Review on underwater wireless power transfer technology and its application[J]. Transactions of China Electro- technical Society, 2019, 34(8): 5-14. [5] 赵争鸣, 张艺明, 陈凯楠. 磁耦合谐振式无线电能传输技术新进展[J]. 中国电机工程学报, 2013, 33(3): 2-13. Zhao Zhengming, Zhang Yiming, Chen Kainan.New progress of magnetically-coupled resonant wireless power transfer technology[J]. Proceedings of the CSEE, 2013, 33(3): 2-13. [6] 张献, 章鹏程, 杨庆新, 等. 基于有限元方法的电动汽车无线充电耦合机构的磁屏蔽设计与分析[J]. 电工技术学报, 2016, 31(1): 71-79. Zhang Xian, Zhang Pengcheng, Yang Qingxin, et al.Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method[J]. Transactions of China Electro- technical Society, 2016, 31(1): 71-79. [7] 张剑韬, 朱春波, 陈清泉. 应用于AGV的非接触式无线充电技术研究[J]. 电工技术学报, 2013, 28(增刊1): 100-104. Zhang Jiantao, Zhu Chunbo, Chen Qingquan.Study on contactless wireless charging technology applied to AGV[J]. Transactions of China Electrotechnical Society, 2013, 28(S1): 100-104. [8] 马秀娟, 武帅, 蔡春伟, 等. 应用于无人机的无线充电技术研究[J]. 电机与控制学报, 2019, 23(8): 1-9. Ma Xiujuan, Wu Shuai, Cai Chunwei, et al.Research on wireless charging technology applied to UAVs[J]. Electric Machines and Control, 2019, 23(8): 1-9. [9] Feezor M D, Sorrell F Y, Blankinship P R.An interface system for autonomous undersea vehicles[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 522-525. [10] Kojiya T, Sato F, Matsuki H, et al.Automatic power supply system to underwater vehicles utilizing non-contacting technology[C]//Oceans '04 MTS/IEEE Techno-Ocean, Kobe, Japan, 2004: 2341-2345. [11] Kan Tianze, Mai Ruikun, Mercier P P, et al.Design and analysis of a three-phase wireless charging system for lightweight autonomous underwater vehicles[J]. IEEE Transactions on Power Electronics, 2018, 33(8): 6622-6632. [12] Kan Tianze, Zhang Yiming, Yan Zhengchao, et al.A rotation-resilient wireless charging system for lightweight autonomous underwater vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6935-6942. [13] Jie Zesong, Li Dejun, Lin Lin, et al.Design con- siderations for electromagnetic couplers in contact- less power transmission systems for deep-sea applications[J]. Journal of Zhejiang University Science C: Computer & Electronics, 2010, 11(20): 824-834. [14] Zhou Jie, Li Dejun, Chen Ying.Frequency selection of an inductive contactless power transmission system for ocean observing[J]. Ocean Engineering, 2013, 60(3): 175-185. [15] Lin Mingwei, Li Dejun, Yang Canjun.Design of an ICPT system for battery charging applied to underwater docking systems[J]. Ocean Engineering, 2017, 145: 373-381. [16] 王司令, 宋保维, 段桂林, 等. 水下航行器非接触式电能传输技术研究[J]. 电机与控制学报, 2014, 18(6): 36-41. Wang Siling, Song Baowei, Duan Guilin, et al.Study on non-contact power transmission of underwater[J]. Electric Machines and Control, 2014, 18(6): 36-41. [17] Cai Chunwei, Yang Zi, Qin Mu, et al.High transmission capacity P.U.A. wireless power transfer for AUV using an optimized magnetic coupler[C]// 2018 IEEE International Magnetics Conference, Singapore, Singapore, 2018: 1-1. [18] 安慧林, 刘国强, 李艳红, 等. 三维抗偏转磁耦合谐振式无线电能传输谐振器特性研究[J]. 电工技术学报, 2019, 34(13): 2679-2685. An Huilin, Liu Guoqiang, Li Yanhong, et al.The characteristics study of three dimension anti deflection magnetic coupling resonance wireless energy trans- mission resonator[J]. Transactions of China Electro- technical Society, 2019, 34(13): 2679-2685. [19] 陈宏亮, 林苏斌. 全方向无线充电负载位置前端监测[J]. 电气技术, 2019, 20(8): 28-32. Chen Hongliang, Lin Subin.Front-end monitoring of all-direction wireless charging load position[J]. Electrical Engineering, 2019, 20(8): 28-32. [20] 国玉刚, 崔纳新. LCC-S型无线电能传输系统优化配置及特性研究[J]. 电工技术学报, 2019, 34(18): 2723-3731. Guo Yugang, Cui Naxin.Research on optimal con- figuration and characteristics based on LCC-S type wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 2723-3731. [21] 刘方, 陈凯楠, 蒋烨, 等. 双向无线电能传输系统效率优化控制策略研究[J]. 电工技术学报, 2019, 34(5): 5-15. Liu Fang, Chen Kainan, Jiang Ye, et al.Research on the overall efficiency optimization of the bidir- ectional wireless power transfer system[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(5): 5-15. [22] 宋凯, 李振杰, 杜志江, 等. 变负载无线充电系统的恒流充电技术[J]. 电工技术学报, 2017, 32(13): 130-136. Song Kai, Li Zhenjie, Du Zhijiang, et al.Constant current charging technology for variable load wireless charging system[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 130-136. [23] 刘闯, 郭赢, 葛树坤, 等. 基于双LCL谐振补偿的电动汽车无线充电系统特性分析与实验验证[J]. 电工技术学报, 2015, 30(15): 127-135. Liu Chuang, Guo Ying, Ge Shukun, et al.Characteri- stics analysis and experimental verification of the double LCL resonant compensation network for electrical vehicles wireless power transfer[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 127-135. [24] Li Siqi, Mi C C.Wireless power transfer for electric vehicle applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 4-17. [25] 张望, 伍小杰, 夏晨阳, 等. 补偿参数对串/串补偿型无线电能传输系统特性的影响分析[J]. 电力系统自动化, 2019, 43(7): 247-258. Zhang Wang, Wu Xiaojie, Xia Chenyang, et al.Effect of compensation parameter on characteristics of series/series compensated wireless power system[J]. Automation of Electric Power Systems, 2019, 43(7): 247-258. [26] Diekhans T, Doncker R W D. A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6320-6328.