A Wireless Power Transfer System Topology with Automatic Switching Characteristics of Constant Current and Constant Voltage Output for Electric Vehicle Charging
Wu Lijun1, Li Guanxi2, Zhang Zhuhaobo2, Ma Hao2
1. Zhejiang Business College Hangzhou 310053 China; 2. College of Electrical Engineering Zhejiang University Hangzhou 310027 China
Abstract:Wireless power transfer system has the advantages of safety, reliability and convenience for electric vehicle charging. According to charging characteristics of lithium batteries used in electric vehicles and previous research on the loosely coupled transformer and compensation topologies, a wireless power transfer system design consisting of PS-SS and PS-SLCL compensation topologies is proposed in this paper. The charging mode of the system automatically changes from the CC mode to the CV mode with the change of the load impedance. Soft switching characteristics of the primary inverter can be obtained in the whole charging process. Topology parameters and transformer model dimensions are designed in terms of theoretical analysis on the system characteristics. Simulation results verify the constant current and constant voltage outputs of the system, and a 1kW experimental platform is built to verify the effectiveness of the proposed design.
吴丽君, 李冠西, 张朱浩伯, 马皓. 一种具有恒流恒压输出自切换特性的电动汽车无线电能传输系统拓扑[J]. 电工技术学报, 2020, 35(18): 3781-3790.
Wu Lijun, Li Guanxi, Zhang Zhuhaobo, Ma Hao. A Wireless Power Transfer System Topology with Automatic Switching Characteristics of Constant Current and Constant Voltage Output for Electric Vehicle Charging. Transactions of China Electrotechnical Society, 2020, 35(18): 3781-3790.
[1] 赵争鸣, 刘方, 陈凯楠. 电动汽车无线充电技术研究综述[J]. 电工技术学报, 2016, 31(20): 30-40. Zhao Zhengming, Liu Fang, Chen Kainan.New progress of wireless charging technology for electric vehicles[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 30-40. [2] Mi C C, Buja G, Choi S Y, et al.Modern advances in wireless power transfer systems for roadway powered electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6533-6545. [3] Fernandez C, Avrcia O, Prieto R, et al.Overview of different alternatives for the contactless transmission of energy[C]//Proceedings of IEEE Industrial Electronics Society Conference (IECON), Spain, 2002: 1318-1323. [4] 王宏健, 于乐, 陈江, 等. 无人水下航行器无线能量传输系统补偿网络研究[J]. 电工技术学报, 2015, 30(19): 39-46. Wang Hongjian, Yu Le, Chen Jiang, et al.Study on compensation network for wireless power trans- mission system of unmanned underwater vehicle[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 39-46. [5] 徐桂芝, 李晨曦, 赵军, 等. 电动汽车无线充电电磁环境安全性研究[J]. 电工技术学报, 2017, 32(22): 152-157. Xu Guizhi, Li Chenxi, Zhao Jun, et al.Electro- magnetic environment safety study of wireless electric vehicle charging[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 152-157. [6] Lu Fei, Zhang Hua, Hofmann H, et al.A dynamic charging system with reduced output power pulsation for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6580-6590. [7] Potanina E E, Potanina V Y.Li-ion battery charger with three-parameter regulation loop[C]//Proceedings of IEEE 36th Conference on Power Electronics Specialists, Germany, 2005: 836-2840. [8] 张昊. 基于IC曲线特征参数的锂离子电池SOH估计及DSP实现[D]. 北京: 北京交通大学, 2018. [9] Li Zhenjie, Zhu Chunbo, Jiang Jinhai, et al.A 3kW wireless power transfer system for sightseeing car supercapacitor charge[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3301-3316. [10] Kim M, Joo D, Lee B K.Design and control of inductive power transfer system for electric vehicles considering wide variation of output voltage and coupling coefficient[C]//Proceedings of IEEE Applied Power Electronics Conference and Exposition (APEC), USA, 2017: 3648-3653. [11] Yuan Xiaofang, Zhang Yunling, Wang Yan, et al.Output voltage control of inductive power transfer system based on extremum seeking control[J]. IET Power Electronics, 2015, 8(11): 2290-2298. [12] Wang C S, Stielau O H, Covic G A.Design considerations for a contactless electric vehicle battery charger[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1308-1314. [13] Budhia M, Covic G A, Boys J T.Design and optimization of circular magnetic structures for lumped inductive power electronics[J]. IEEE Transa- ctions on Power Electronics, 2011, 26(11): 3096-3018. [14] Berger A, Agostinelli M, Vesti S, et al.A wireless charging systems applying phase-shift and amplitude control to maximize efficiency and extractable power[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6338-6348. [15] Qu Xiaohui, Han Hongdou, Wong S C, et al.Hybrid IPT topologies with constant current or constant voltage output for battery charging applications[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6329-6337. [16] 陈威, 吕征宇. 第四类LLC谐振变流器模块功能准同构拓扑探求及变形研究[J]. 中国电机工程学报, 2009, 29(9): 35-42. Chen Wei, Lü Zhengyu.Investigation on set of quasi-isomorphic topologies and structural variations of type-4 LLC resonant DC-DC converter based on module function identification[J]. Proceedings of the CSEE, 2009, 29(9): 35-42. [17] 王萍, 陈博, 王议锋, 等. 一种多谐振隔离双向DC-DC变换器[J]. 电工技术学报, 2019, 34(8): 1667-1676. Wang Ping, Chen Bo, Wang Yifeng, et al.An isolated three-port bidirectional LCLC multi-resonant DC-DC converter[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1667-1676. [18] 刘闯, 郭赢, 葛树坤, 等. 基于LCL谐振补偿的电动汽车无线主电系统特性分析与实验验证[J]. 电工技术学报, 2015, 30(15): 127-135. Liu Chuang, Guo Ying, Ge Shukun, et al.Characteri- stics analysis and experimental verification of the double LCL resonant compensation network for electric vehicles wireless power transfer[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(15): 127-135. [19] 陈凯楠, 赵争鸣, 刘方, 等. 电动汽车双向无线充电系统谐振拓扑分析[J]. 电力系统自动化, 2017, 41(2): 66-72. Chen Kainan, Zhao Zhengming, Liu Fang, et al.Resonant topology analysis of bi-directional wireless charging system for electric vehicles[J]. Transactions of Power System Automation, 2017, 41(2): 66-72. [20] Budhia M, Covic G, Boys J.A new IPT magnetic coupler for electric vehicle charging systems[C]// Proceedings of IEEE Industrial Electronics Society Conference (IECON), USA, 2010: 2487-2492. [21] Zaheer A, Covic G A, Kacprzak D.A bipolar pad in a 10kHz 300W distributed IPT system for AGV appli- cations[J]. IEEE Transactions on Industrial Electro- nics, 2014, 61(7): 3288-3301.