Output Characteristics of Fe-Ga Magnetostrictive Displacement Sensor under Torsional Stress
Li Yuanyuan1,2, Wang Bowen1,2, Huang Wenmei1,2, Li Yunkai1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:In order to improve the measuring accuracy of the magnetostrictive displacement sensor, the output characteristics of the sensor need to be analyzed theoretically and experimentally. Aiming at the problem that the magnetization of the waveguide wire changes with torsional force and affects the output characteristics of the sensor, the torsional stress was solved based on the material mechanics, and the influence of the torsional force on the Weidmann effect was analyzed from the perspective of magnetic domain. According to the nonlinear constitutive model and magnetostrictive inverse effect of the Fe-Ga alloy, the output voltage model of magnetostrictive displacement sensor was established. The output voltages under different helical magnetic fields and torsional forces were calculated, and a test platform of output voltage under pre-applied torsional stress was set up. Thus, the variation law that the output voltage decreases nonlinearly with the increase of torsional stress is determined theoretically and experimentally. It is also shown that the voltage drop caused by forward torsional stress is smaller than that caused by reverse torsional stress under the same magnetic field, and the effect of torsional stress on voltage can be offset to some extent by increasing bias magnetic field or exciting magnetic field. The paper could provide theoretical basis and guidance for designing displacement sensors with large range and high accuracy.
李媛媛, 王博文, 黄文美, 李云开. 扭转力作用下Fe-Ga磁致伸缩位移传感器的输出特性[J]. 电工技术学报, 2019, 34(21): 4409-4418.
Li Yuanyuan, Wang Bowen, Huang Wenmei, Li Yunkai. Output Characteristics of Fe-Ga Magnetostrictive Displacement Sensor under Torsional Stress. Transactions of China Electrotechnical Society, 2019, 34(21): 4409-4418.
[1] 胡权霞, 于敦波, 杨红川, 等. Fe-Ga磁致伸缩材料研究进展[J]. 稀有金属, 2013, 37(1): 164-170. Hu Quanxia, Yu Dunbo, Yang Hongchuan, et al.Development of magnetostrictive properties of Fe-Ga alloy[J]. Chinese Journal of Rare Metals, 2013, 37(1): 164-170. [2] 卢诗华, 于歆杰, 楼国锋. 一种基于磁电层合材料的新结构大电流传感器[J]. 电工技术学报, 2016, 31(23): 70-76. Lu Shihua, Yu Xinjie, Lou Guofeng.A new mag- netoelectric laminate based high-current sensor[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 70-76. [3] 黄文美, 薛胤龙, 王莉. 考虑动态损耗的超磁致伸缩换能器的多场耦合模型[J]. 电工技术学报, 2016, 31(7): 173-178. Huang Wenmei, Xue Yinlong, Wang Li.Multi-field coupling model considering dynamic losses for giant magnetostrictive transducers[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 173-178. [4] Zheng Wendong, Wang Bowen, Liu Huaping, et al.Structural design and output characteristic analysis of magnetostrictive tactile sensor for robotic appli- cations[J]. Aip Advances, 2018, 8(5): 056622. [5] 翁玲, 曹晓宁, 胡秀玉, 等. 双线圈铁镓合金换能器的输出特性[J]. 电工技术学报, 2018, 33(19): 4476-4485. Weng Ling, Cao Xiaoning, Hu Xiuyu, et al.Output characteristics of double coil Fe-Ga alloy trans- ducer[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4476-4485. [6] 刘焱, 王烨. 位移传感器的技术发展现状与发展趋势[J]. 自动化技术与应用, 2013, 32(6): 76-80. Liu Yan, Wang Ye.Present status and thrend of technical development of displacement sensor[J]. Techniques of Automation & Applications, 2013, 32(6): 76-80. [7] 余超, 周新志, 熊胤琪. Fe83Gal7磁致伸缩位移传感器激励信号的ANSYS分析及DSP实现[J]. 仪表技术与传感器, 2012(8): 4-6. Yu Chao, Zhou Xinzhi, Xiong Yinqi.Research on excitation signal of Fe83Ga17 magnetostrictive displacement sensor based on ANSYS and DSP[J]. Instrument Technique and Sensor, 2012(8): 4-6. [8] 王峥. 磁致伸缩直线位移传感器弹性波机理研究[D]. 太原: 太原理工大学, 2011. [9] Deng Chao, Kang Yihua, Li Erlong, et al.A new model of the signal generation mechanism on magnetostrictive position sensor[J]. Measurement, 2014, 47(1): 591-597. [10] 王博文, 张露予, 王鹏, 等. 磁致伸缩位移传感器检测信号分析[J]. 光学精密工程, 2016, 24(2): 358-364. Wang Bowen, Zhang Luyu, Wang Peng, et al.Analysis of detection signal for magnetostrictive displacement sensor[J]. Optics and Precision Engineering, 2016, 24(2): 358-364. [11] 张露予, 王博文, 翁玲, 等. 螺旋磁场作用下磁致伸缩位移传感器的输出电压模型及实验[J]. 电工技术学报, 2015, 30(12): 21-26. Zhang Luyu, Wang Bowen, Weng Ling, et al.The outputvoltage model of magnetostrictive displace- ment sensor inhelical magnetic field and its experimental study[J]. Transaction of China Electro- technical Society, 2015, 30(12): 21-26. [12] Li Jiheng, Gao Xuexu, Zhu Jie, et al.Wiedemann effect of Fe-Ga based magnetostrictive wires[J]. Chinese Physics B, 2012, 21(8): 476-481. [13] Wang Bowen, Li Yuanyuan, Xie Xinliang, et al.The output voltage model and experiment of magneto- strictive displacement sensor based on Weidemann effect[J]. Aip Advances, 2018, 8(5): 056611. [14] 谢新良, 王博文, 周露露, 等. 磁致伸缩位移传感器波导丝扭转超声波衰减特性研究[J]. 电工技术学报, 2018, 33(3): 689-696. Xie Xinliang, Wang Bowen, Zhou Lulu, et al.Research on torsional ultrasonic attenuation characteristics of the magnetostrictive displacement sensor waveguide[J]. Transactions of China Electro- technical Society, 2018, 33(3): 689-696. [15] 王博文, 谢新良, 张露予, 等. 大量程磁致伸缩位移传感器的应力波衰减特性研究[J]. 仪器仪表学报, 2017, 38(4): 813-820. Wang Bowen, Xie Xinliang, Zhang Luyu, et al.Analysis of stress wave attenuation property of large- scale magnetostrictive displacement sensor[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 813-820. [16] 李媛媛, 王博文, 黄文美, 等. 考虑应力波衰减特性的磁致伸缩位移传感器的输出特性与实验[J]. 仪器仪表学报, 2018, 39(7): 34-41. Li Yuanyuan, Wang Bowen, Huang Wenmei, et al.Output characteristics and experiments of magneto- strictive displacement sensor considering the attenuation characteristic of stress wave[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 34-41. [17] Zhang Luyu, Wang Bowen, Yin Xiaowen, et al.The output characteristics of Galfenol magnetostrictive displacement sensor under the helical magnetic field and stress[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4. [18] Parsons M J, Datta S, Mudivarthi C, et al.Torque sensing using rolled Galfenol patches[J]. Proceedings of Spie, 2008, DOI: 10.1117/12.776576. [19] Calkins F T, Smith R C, Flateau A B.An energy-based hysteresis model for magnetostrictive transducers[J]. IEEE Transactions on Magnetics, 2002, 36(2): 429-439. [20] Mahadevan A, Evans P G, Dapino M J.Dependence of magnetic susceptibility on stress in textured polycrystalline Fe81.6Ga18.4 and Fe79.1Ga20.9 Galfenol alloys[J]. Applied Physics Letters, 2010, 96(1): 012502. [21] Zheng Xiaojing, Liu Xinen.A nonlinear constitutive model for Terfenol-D rods[J]. Journal of Applied Physics, 2005, 97(5): 053901. [22] Li Jiheng, Li Mingming, Mu Xing, et al.Temperature and magnetic field dependencies of the Young's modulus in magnetostrictive Fe-Ga alloys[J]. Journal of Applied Physics, 2018, 123(7): 075102. [23] 李金泽, 李宝才, 翟学明. 一种考虑多次谐波的行波自然频率测距方法[J]. 电力系统保护与控制, 2016, 44(11):9-15. Li Jinze, Li Baocai, Zhai Xueming.Single terminal fault location by natural frequencies of travelling wave considering multiple harmonics[J]. Power System Protection and Control, 2016, 44(11): 9-15.