Research on Torsional Ultrasonic Attenuation Characteristics of the Magnetostrictive Displacement Sensor Waveguide
XieXinliang, WangBowen, ZhouLulu, Weng Ling, Sun Ying
Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin300130 China
Abstract:A newmodel is developed topredict the attenuation characteristics of torsional ultrasonic in the waveguide. Because the uniformity of waveguide is affected by machining process. The influence of internal variation of material on the detection signal is greater than that of the attenuation of ultrasonic propagation in the short distance.There is a newdetection scheme. Compared with theexisting models, the effect of material inhomogeneity can be filtered. The permanent magnet is fixed in the middle of waveguide. Removingdamping at both ends. Both ends of the ultrasonic can be reflected. The ultrasonic attenuation coefficientscan be measured by detecting the amplitude of the two echoes. The attenuation coefficients of Fe-Ga and Fe-Ni waveguides of 0.5mm wire diameter are 1.34 dB/m and 1.57 dB/m under 65kHz torsional ultrasound. Furthermore, the effects of the waveguide wire diameter, torsional ultrasonic frequency and stress on the attenuation coefficient have been analyzed. The attenuation coefficient increases with increasingthe diameter wire of waveguide. It has obviously positive correlationwithtorsional ultrasonic frequency. Moreover, it decreases firstly and then tended to be stablewith increment of stress. Research results provide a theoretical guidance for the optimal design of large range magnetostrictive displacement sensor (MDS).
[1] 刘素贞, 李丽滨, 蔡智超, 等. 电磁超声检测系统中消除电磁干扰电路的设计[J]. 电工技术学报, 2016, 31(1): 80-84. Liu Suzhen, Li Libin, CaiZhichao, et al. The design for electromagnetic interference eliminating circuits in electromagnetic ultrasonic testing systems[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 80-84. [2] Valiente-Blanco I, Diez-Jimenez E, Perez-Diaz J L. Engineering and performance of a contactless linear slider based on superconducting magnetic levitation for precision positioning[J]. Mechatronics, 2013, 23(8): 1051-1060. [3] 田书, 王亚彩, 王晓卫, 等. 基于磁场测量的配电网单相接地选线及定位新方法[J]. 电力系统保护与控制, 2016, 44(11): 61-67. Tian Shu, Wang Yacai, Wang Xiaowei, et al.A new magnetic field measurement based method to detect faulty line and fault location for single phase to ground fault occurred in distribution network[J]. Power System Protection and Control, 2016, 44(11): 61-67. [4] Reininger T, Welker F, Zeppelin M V.Sensors in position control applications for industrial automation[J]. Sensors & Actuators A Physical, 2006, 129(1): 270-274. [5] Valiente-Blanco I, Diez-Jimenez E, Perez-Diaz J L. Engineering and performance of a contactless linear slider based on superconducting magnetic levitation for precision positioning[J]. Mechatronics, 2013, 23(8): 1051-1060. [6] Kartik V, Sebastian A, Tuma T, et al.High-bandwidth nanopositioner with magnetoresistance based position sensing[J]. Mechatronics, 2012, 22(3): 295-301. [7] 刘赟, 俞集辉, 程鹏. 基于电磁-热耦合场的架空输电线路载流量分析与计算[J]. 电力系统保护与控制, 2015, 43(9): 28-34. Liu Yun, Yu Jihui, Cheng Peng.Analysis and calculation on the ampacity of overhead transmission lines based on electromagnetic-thermal coupling fields[J]. Power System Protection and Control, 2015, 43(9): 28-34. [8] 闫艳霞, 崔建华. 基于双向直流法的电磁式电流互感器剩磁测量仪研究[J]. 电力系统保护与控制, 2015, 43(14): 137-142. Yan Yanxia, Cui Jianhua.Residual flux measuring instrument for electromagnetic current transformer based on bidirectional DC method[J]. Power System Protection and Control, 2015, 43(14): 137-142. [9] 张露予, 王博文, 翁玲, 等. 螺旋磁场作用下磁致伸缩位移传感器的输出电压模型及实验[J]. 电工技术学报, 2015, 30(12): 21-26. Zhang Luyu, Wang Bowen, Weng Ling, et al.The output voltage model of magnetostrictive displacement sensor in helical magnetic field and its experimental study[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 21-26. [10] Zhang Luyu, Wang Bowen, Yin Xiaowen, et al.The output characteristics of Galfenolmagnetostrictive displacement sensor under the helical magnetic field and stress[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4. [11] Wang Yuemin, Zhu Longxiang, Shen Chuanjun, et al.A theoretical computation model of magnetostrictive guided waves NDT output signals in ferromagnetic cylinder[C]//Information Science and Technology (ICIST), 2012 International Conference on IEEE, Wuhan, 2012: 648-650. [12] 夏天, 高学绪, 李纪恒, 等. 铁镍合金丝威德曼效应测量与磁畴结构[J]. 磁性材料及器件, 2008, 39(2): 21-25. Xia Tian, Gao Xuexu, Li Jiheng, et al.Testing of wiedemann effect and magnetic domain of Fe-Ni alloy wires[J]. Magnetic Materials and Devices, 2008, 39(2): 21-25. [13] Li Jiheng, Gao Xuexu, Zhu Jie, et al.Wiedemann effect of Fe-Ga based magnetostrictivewires[J]. Chinese Physics B, 2012, 21(8): 476-481. [14] 周新志, 余超, 熊胤琪, 等. 磁致伸缩位移传感器Fe57Ni43波导丝的磁电特性研究[J]. 电子科技大学学报, 2013, 42(4): 630-634. Zhou Xinzhi, Yu Chao, XiongYinqi, et al. Research on the magnetic and electrical properties of the Fe57Ni43 line of magnetostrictive displacement sensors[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 630-634. [15] 周新志, 余超, 熊胤琪, 等. 新型Fe83Ga17波导丝在磁致伸缩位移传感器中的应用[J].重庆大学学报, 2013, 36(5): 64-69. Zhou Xinzhi, Yu Chao, XiongYinqi, et al. Application of Fe83Ga17 line to magnetostrictive displacement sensors[J]. Journal of Chongqing University, 2013, 36(5): 64-69. [16] 陶若杰, 赵辉, 刘伟文, 等. 双丝差动型磁致伸缩位移传感器结构设计[J]. 传感技术学报, 2010, 23(6): 799-802. Tao Ruojie, Zhao Hui, Liu Weiwen, et al.Designment of bi-waveguide differential magnetostrictive displacement sensor[J]. Chinese Journal of Sensors and Actuators, 2010, 23(6): 799-802. [17] 李丛珊, 姜印平. 一种磁致伸缩位移传感器的优化设计方法[J]. 传感技术学报, 2014,27(9):1202-1207. Li Congshan, Jiang Yinping.An optimization design method of magnetostrictive displacement sensor[J]. Chinese Journal of Snsors and Actuator, 2014, 27(9): 1202-1207. [18] 王博文, 张露予, 王鹏, 等.磁致伸缩位移传感器检测信号分析[J]. 光学精密工程, 2016, 24(2): 358-364. Wang Bowen, Zhang Luyu, Wang Peng, et al.Analysis of detection signal for magnetostrictive displacement sensor[J]. Optics and Precision Engineering, 2016, 24(2): 358-364. [19] 代前国, 周新志. 大位移磁致伸缩传感器的弹性波建模与分析[J]. 传感技术学报, 2013, 26(2): 195-199. Dai Qianguo, Zhou Xinzhi.Modeling and analysis of elastic wave of large-range magnetostrictive displacement sensor[J]. Chinese Journal of Snsors and Actuator, 2013, 26(2): 195-199. [20] 翁玲, 罗柠, 张露予, 等. Fe-Ga合金磁特性测试装置的设计与实验[J]. 电工技术学报, 2015, 30(2): 237-241. Weng Ling, Luo Ning, Zhang Luyu, et al.Design and experiment of a testing device for Fe-Ga magnetic properties[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 237-241. [21] Jackson F H.Analytical methods in vibrations[J]. Electronics & Power, 1967, 13(12):480. [22] Bouda A B, Lebaili S, Benchaala A.Grain size influence on ultrasonic velocities and attenuation[J]. Ndt& E International, 2003, 36(1): 1-5. [23] 陈乔, 刘向君, 梁利喜, 等. 裂缝模型声波衰减系数的数值模拟[J]. 地球物理学报, 2012, 55(6): 2044-2052. Chen Qiao, Liu Xiangjun, Liang Lixi, et al.Numerical simulation of the fractured model acoustic attenuation coefficient[J]. Chinese Journal of Geophysics, 2012, 55(6): 2044-2052. [24] İsmail H S, Kılıçkaya M S.Mean grain size determination in marbles by ultrasonic first backwall echo height measurements[J]. Ndt& E International, 2006, 39(1): 82-86. [25] 张翔, 陈军, 林莉, 等. 复合材料孔隙形貌特征对超声波散射衰减影响的分析[J]. 中国机械工程, 2010, 21(14): 1735-1741. Zhang Xiang, Chen Jun, Lin Li, et al.Effects on ultrasonic scattering attenuation coefficient of morphological characteristics of voids in composite materials[J]. China Mechanical Engineering, 2010, 21(14): 1735-1741.