Reliability Evaluation Method of DC Circuit Breaker Based on Markov Model
Zhao Shutao1, Wang Bo1, Hua Huichun2, Zhu Jipeng3
1. School of Electrical and Electronic Engineering North China Electric Power University Baoding 071003 China; 2. State Grid Zhejiang Electric Power Co. Ltd Huzhou Power Supply Company Huzhou 313000 China
Abstract:The success or failure of a DC breaker control current on-off depends on the overall reliability. Based on the topology of mechanical, hybrid and all solid state DC circuit breakers, fault trees are used to sort out the fault events of each branch. A Markov evaluation model is used to describe the transfer process between the components of the DC circuit breaker and the whole and different fault states. A method based on fault rate and availability characteristic parameters to evaluate the steady-state operation state probability of different topology DC circuit breakers is proposed. Finally, the reliability calculation of three different topology DC breakers in ±7.5kV medium voltage DC distribution network is carried out, the weak links affecting the overall reliability are identified, and the trend of reliability with redundancy design is predicted. The results show that the mechanical DC circuit breaker has the highest availability at present, and mechanical switch and IGBT module are the main factors restrict the reliability of circuit breakers. With the development of power electronic device technology, the availability of all solid state DC circuit breaker will exceed that of mechanical type by reasonable redundancy design, which will have more application advantages in the future development of DC distribution network.
[1] Chowdhury S K, Baski P K.A simple lumped parameter thermal model for electrical machine of TEFC design[C]//2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, New Delhi, India, 2010: 1-7. [2] Jankowski T A, Prenger F C, Hill D D, et al.Deve- lopment and validation of a thermal model for electric induction motors[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 4043-4054. [3] Li Guangjin, Ojeda J, Hoang E, et al.Thermal- electromagnetic analysis for driving cycles of embedded flux-switching permanent-magnet motors vehicular technology[J]. IEEE Transactions on Magnetics, 2012, 61(1): 140-151. [4] 王晓远, 高鹏. 等效热网络法和有限元法在轮毂电机温度场计算中的应用[J]. 电工技术学报, 2016, 31(16): 27-33. Wang Xiaoyuan, Gao Peng.Application of equivalent thermal network method and finite element method in temperature calculation of in-wheel motor[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(16): 27-33. [5] 王红宇, 李和明, 罗应立, 等. 三峡水轮发电机全定子非线性热-流体耦合网络模型研究[J]. 中国电机工程学报, 2008, 28(8): 136-142. Wang Hongyu, Li Heming, Luo Yingli, et al.Research on the nonlinear thermal-liquid coupled network model of whole stator of three-gorge generator[J]. Proceedings of the CSEE, 2008, 28(8): 136-142. [6] 张育兴, 马伟明, 陈伯义, 等. 周期脉冲式直线感应电机定子瞬态温度特性[J]. 中国电机工程学报, 2012, 32(9): 86-92. Zhang Yuxing, Ma Weiming, Chen Boyi, et al.Transient temperature characteristics of periodic pulse-type linear induction motor stators[J]. Pro- ceedings of the CSEE, 2012, 32(9): 86-92. [7] 朱高嘉, 朱英浩, 朱建国, 等. 基于有限公式法和流固耦合的永磁牵引电动机冷却系统设计与分析[J]. 电工技术学报, 2017, 32(5): 70-77. Zhu Gaojia, Zhu Yinghao, Zhu Jianguo, et al.Thermal analysis and cooling system design of a permanent magnet traction motor using com- putational fluid dynamics and cell method[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 70-77. [8] 张琦, 李增亮, 董祥伟, 等. 水下电机损耗加载方式及温度场耦合分析[J]. 电工技术学报, 2018, 33(5): 1008-1014. Zhang Qi, Li Zengliang, Dong Xiangwei, et al.Study of the loss loading method and coupling analysis of temperature distribution of the underwater motor[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1008-1014. [9] 朱高嘉, 朱英浩, 朱建国, 等. 永磁电机温度场的改进有限公式迭代算法[J]. 电工技术学报, 2017, 32(16): 136-143. Zhu Gaojia, Zhu Yinghao, Zhu Jianguo, et al.A modified thermal rewind model of permanent magnet motors based on finite formulation method[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 136-143. [10] 王晓远, 杜静娟. CFD分析车用电机螺旋水路的散热特性[J]. 电工技术学报, 2018, 33(4): 956-963. Wang Xiaoyuan, Du Jingjuan.CFD analysis of heat transfer characterization in spiral channel cooling for permanent magnet electric machine in EVs[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 956-963. [11] 韩雪岩, 张华伟, 徐昕, 等. 基于计算流体力学的非晶合金轴向磁通永磁电机冷却系统设计[J]. 电工技术学报, 2017, 32(20): 189-197. Han Xueyan, Zhang Huawei, Xu Xin, et al.Design of cooling system for amorphous alloy axial flux permanent magnet motor based on computational fluid dynamics[J]. Transactions of China Electro- technical Society, 2017, 32(20): 189-197. [12] Liu Ranran, Zheng Ping, Xie Dagang, et al.Research on the high power density electromagnetic pro- peller[J]. IEEE Transactions on Magnetics, 2007, 43(1): 355-358. [13] Pechánek R, Bouzek L.Analyzing of two types water cooling electric motors using computational fluid dynamics[C]//2012 15th International Power Elec- tronics and Motion Control Conference, Novi Sad, Serbia, 2012: 1-5. [14] 杨学威, 张小发. 电机壳体Z字型冷却水道设计[J]. 电机控制与应用, 2016, 43(9): 62-65. Yang Xuewei, Zhang Xiaofa.Z-shaped cooling channels of motor shell designs[J]. Electric Machines & Control Application, 2016, 43(9): 62-65. [15] 李翠萍, 柴凤, 程树康. 冷却水流速对汽车水冷电机温升影响研究[J]. 电机与控制学报, 2012, 16(9): 1-7. Li Cuiping, Chai Feng, Cheng Shukang.Research on the effects of cooling water velocity on temperature rise of the water-cooled motor in electric vehicles[J]. Electric Machines & Control, 2012, 16(9): 1-7. [16] 王小飞, 代颖, 罗建, 等. 电动汽车牵引用水冷异步电机耦合场分析[J]. 电机控制与应用, 2018, 45(4): 110-115. Wang Xiaofei, Dai Ying, Luo Jian, et al.Coupled field analysis of water-cooled induction motor for electric vehicle[J]. Electric Machines & Control Application, 2018, 45(4): 110-115.