Series Arc Fault Identification Method in Aviation Lines Based on Multi-Information Fusion
Cui Ruihua1, 2, Wang Yang1, 2, Wang Chuanyu1, 2, Li Yingnan1, 2, Li Fengfeng1, 2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:The working environment of aeronautical circuit is complicated and the reliability of arc fault discrimination is relatively high. However, the single feature identification method has relatively poor diagnostic efficiency. To solve this problem, a multi-feature information fusion algorithm for the detection of arc faults in aviation low voltage distribution lines is proposed. The characteristics of the line current time domain, frequency domain and time-frequency domain were extracted by using the four feature quantities of pulse width percentage, coefficient of variation, inter-harmonic mean and wavelet singular entropy. They were taken for information fusion by establishing the evaluation model of arc fault based on mutation principle to obtain arc fault evaluation index, and the arc fault is judged according to the evaluation index. The results show that the evaluation criteria under normal conditions and arc faults are distinct and easy to set thresholds, and this method is applicable to multiple load types and current levels.
崔芮华, 王洋, 王传宇, 李英男, 李锋锋. 基于多信息融合的航空线路串联故障电弧识别方法[J]. 电工技术学报, 2019, 34(zk1): 118-125.
Cui Ruihua, Wang Yang, Wang Chuanyu, Li Yingnan, Li Fengfeng. Series Arc Fault Identification Method in Aviation Lines Based on Multi-Information Fusion. Transactions of China Electrotechnical Society, 2019, 34(zk1): 118-125.
[1] Mohd A, Ortjohann E, Morton D, et al.Review of control techniques for inverters parallel operation[J]. Electric Power Systems Research, 2010, 80(12): 1477-1487. [2] Sun Xiaofeng, Tian Yanjun, Chen Zhe.Adaptive decoupled power control method for inverter connected DG[J]. Renewable Power Generation, 2014, 8(2): 171-182. [3] 方红伟, 陶月, 肖朝霞, 等. 并网逆变器并联系统的鲁棒控制与环流分析[J]. 电工技术学报, 2017, 32(18): 248-258. Fang Hongwei, Tao Yue, Xiao Zhaoxia, et al.Robust control and circulating current analysis for grid- connected parallel inverters[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 248-258. [4] Rocabert J, Luna A, Blaabjerg F, et al.Control of power converters in AC microgrids[J]. IEEE Transa- ctions on Power Electronics, 2012, 27(11): 4734-4749. [5] 周贤正, 荣飞, 吕志鹏, 等. 低压微电网采用坐标旋转的虚拟功率V/f下垂控制策略[J]. 电力系统自动化, 2012, 36(2): 47-51. Zhou Xianzheng, Rong Fei, Lü Zhipeng, et al.A coordinate rotational transformation based virtual power V/f droop control method for low voltage microgrid[J]. Automation of Electric Power Systems, 2012, 36(2): 47-51. [6] 李培强, 董彦婷, 段克会, 等. 直流微电网双向AC/DC变换器并联系统控制策略仿真研究[J]. 电力系统保护与控制, 2017, 45(17): 43-50. Li Peiqiang, Dong Yanting, Duan Kehui, et al.Simulation study for control strategy of bi-directional AC/DC converter parallel system in DC microgrid[J]. Power System Protection and Control, 2017, 45(17): 43-50. [7] 赵卓立, 杨苹, 郑成立, 等. 微电网动态稳定性研究述评[J]. 电工技术学报, 2017, 32(10): 111-122. Zhao Zhuoli, Yang Ping, Deng Chengli, et al.Review on dynamic stability research of microgrid[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 111-122. [8] 马皓, 林钊, 林燎源. 基于多智能体的三相逆变器并联系统功率灵活分配[J]. 电工技术学报, 2017, 32(2): 216-227. Ma Hao, Lin Zhao, Lin Liaoyuan.Flexible power distribution for three-phase parallel inverters based on multi-agent systems[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 216-227. [9] Guerrero J M, Hang L, Uceda J.Control of distri- buted uninterruptible power supply systems[J]. IEEE Transactions on Industrial Electronics, 2008, 55(8): 2845-2859. [10] 陈丽娟, 王致杰. 基于改进下垂控制的微电网运行控制研究[J]. 电力系统保护与控制, 2016, 44(4): 16-21. Chen Lijuan, Wang Zhijie.Research of operation control of micro-grid based on improved droop control[J]. Power System Protection and Control, 2016, 44(4): 16-21. [11] Yao Zhang, Hao Ma.Theoretical and experimental investigation of networked control for parallel oper- ation of inverters[J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1961-1970. [12] 王成山, 肖朝霞, 王守相. 微网中分布式电源逆变器的多环反馈控制策略[J]. 电工技术学报, 2009, 24(2): 100-107. Wang Chengshan, Xiao Zhaoxia, Wang Shouxiang.Multiple feedback loop control scheme for inverters of the micro source in microgrids[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 100-107. [13] 张庆海, 罗安, 陈燕东, 等. 并联逆变器输出阻抗分析及电压控制策略[J]. 电工技术学报, 2014, 29(6): 98-105. Zhang Qinghai, Luo An, Chen Yandong, et al.Analysis of output impedance for parallel inverters and voltage control strategy[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 98-105. [14] 李浩然, 杨旭红, 冯成臣. 多逆变器并联下的输出阻抗分析和改进下垂控制策略研究[J]. 电力系统保护与控制, 2015, 43(20): 29-35. Li Haoran, Yang Xuhong, Feng Chengchen.Control strategy research of output impedance analysis and improved droop control based on multiple-inverters parallel[J]. Power System Protection and Control, 2015, 43(20): 29-35. [15] Yao W, Chen M, Matas J, et al.Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 576-588. [16] Li Bin, Zhou Lin, Yu Xirui, et al.New control scheme of power decoupling based on virtual synchronous generator[C]//IEEE Power and Energy Conference at Illinois (PECI), 2016, 1: 1-8. [17] 张平, 石健将, 李荣贵, 等. 低压微网逆变器的“虚拟负阻抗”控制策略[J]. 中国电机工程学报, 2014, 34(12): 1844-1852. Zhang Ping, Shi Jianjiang, Li Ronggui, et al.A control strategy of ‘virtual negative’ impedance for inverters in low-voltage microgrid[J]. Proceedings of the CSEE, 2014, 34(12): 1844-1852. [18] Xu Shungang, Wang Jinping, Xu Jianping.A current decoupling parallel control strategy of single-phase inverter with voltage and current dual closed-loop feedback[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1306-1313. [19] 胡伟, 孙建军, 查晓明, 等. 基于动态相量法的逆变型分布式电源微电网建模与仿真[J]. 电力系统自动化, 2014, 38(3): 14-18. Hu Wei, Sun Jianjun, Zha Xiaoming, et al.Modeling and simulation of microgrid including inverter- interfaced distributed resources based on dynamic phasors[J]. Automation of Electric Power Systems, 2104, 38(3): 14-18. [20] 高范强, 王平, 李耀华, 等. 基于时变相量小信号模型的逆变器并联控制系统分析与设计[J]. 中国电机工程学报, 2011, 31(33): 75-84. Gao Fanqiang, Wang Ping, Li Yaohua, et al.Analysis and design of for paralleled inverter system[J]. Proceedings of the CSEE, 2011, 31(33): 75-84. [21] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175. Zhen TianWen, Chen Laijun, Chen Tianyi, et al. Review and prospect of virtual synchronous gener- ator technologies[J]. Power System Protection and Control, 2015, 39(21): 165-175. [22] Bevrani H, Shokoohi S.An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids[J]. IEEE Transactions on Smart Grid, 2013, 4(3): 1505-1513. [23] Asiminoaei L, Teodorescu R, Blaabjerg F, et al.A digital controlled PV-inverter with grid impedance estimation for ENS detection[J]. IEEE Transactions on Power Electronics, 2005, 20(6): 1480-1490. [24] 吴恒, 阮新波, 杨东升, 等. 虚拟同步发电机功率环的建模与参数设计[J].中国电机工程学报, 2015, 35(24): 6508-6518. Wu Heng, Ruan Xinbo, Yang Dongsheng, et al.Modeling of the power loop and parameter design of virtual synchronous generators[J]. Proceedings of the CSEE, 2015, 35(24): 6508-6518.