Uncertainty Quantification of Response of Buried Pipeline to High-Altitude Electromagnetic Pulse
Liu Qing1, 2, Wang Chendong2, Li Zhanyu3, Wang Yinglan2
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. College of Electrical and Control Engineering Xi’an University of Science and Technology Xi’an 710054 China; 3. Northwest Electric Power Design Institute Co. Ltd China Power Engineering Consulting Group Xi’an 710075 China;
Abstract:High-altitude electromagnetic pulse (HEMP) can induce current and voltage on buried oil/gas pipelines, which may affect the monitoring devices and cathodic protection systems of oil and gas pipelines. In the calculation of the coupling response, it is necessary to consider the uncertainty of the response caused by the variation of the input parameters. The computational efficiency of the traditional Monte Carlo method will decrease with the increase of the sample size. Based on stochastic collocation method (SC) and stochastic reduced order models (SROM) method, the uncertainty quantification calculation model of current and voltage response of buried pipeline have been established in this paper. For the Bell Lab waveform of HEMP, taking incident angle and incident azimuth as random input variables, the statistical information of response current and voltage of buried pipeline has been calculated. Taking the calculation results of Monte Carlo method as reference, the accuracy and computational efficiency of the SC and SROM method have been compared. Finally, based on the SC method, the sensitivity of the response current to the input parameters has been analyzed. The results of the study can provide relevant reference for the uncertainty quantification of buried pipelines.
刘青, 王晨东, 李湛宇, 王英澜. 埋地管道HEMP响应的不确定度量化[J]. 电工技术学报, 2019, 34(9): 1789-1797.
Liu Qing, Wang Chendong, Li Zhanyu, Wang Yinglan. Uncertainty Quantification of Response of Buried Pipeline to High-Altitude Electromagnetic Pulse. Transactions of China Electrotechnical Society, 2019, 34(9): 1789-1797.
[1] 卢斌先, 郝晓飞, 罗艳华, 等. HEMP场激励下交直流高压输电线耦合响应概率分布[J]. 电工技术学报, 2011, 26(1): 141-145. Lu Binxian, Hao Xiaofei, Luo Yanhua, et al.Probability distribution of coupling responses of HVAC and HVDC externally excited by HEMP[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 141-145. [2] 李湛宇, 董宁, 纪锋, 等. 基于多项式混沌方法的场线耦合响应不确定度量化[J]. 强激光与粒子束, 2017, 29(11): 1-6. Li Zhanyu, Dong Ning, Ji Feng, et al.Uncertainty quantification analysis of random field coupling to transmission lines based on polynomial chaos expansion method[J]. High Power Laser and Particle Beams, 2017, 29(11): 1-6. [3] Manfredi P, Canavero F G.Polynomial chaos representation of transmission-line response to random plane waves[C]// International Symposium on Electromagnetic Compatibility-EMC EUROPE, Rome, Italy, 2012: 1-6. [4] Stievano I S, Manfredi P, Canavero F G.Parameters variability effects on multiconductor interconnects via hermite polynomial chaos[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(8): 1234-1239. [5] Manfredi P, Canavero F G.Polynomial chaos for random field coupling to transmission lines[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(3): 677-680. [6] Xiu Dongbin.Efficient Collocational approach for parametric uncertainty analysis[J]. Communications in Computational Physics, 2007, 2(2): 293-309. [7] Field Jr R V, Grigoriu M, Emery J M. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems[J]. Probabilistic Engineering Mechanics, 2015, 41: 60-72. [8] Fei Zhouxiang, Huang Yi, Zhou Jiafeng, et al.Uncertainty quantification of crosstalk using stochastic reduced order models[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(1): 228-239. [9] Sarkar S, Warner J E, Aquino W, et al.Stochastic reduced order models for uncertainty quantification of intergranular corrosion rates[J]. Corrosion Science, 2014, 80: 257-268. [10] Zhang Juqiu, Liang Zhishan.Effects of high-altitude electromagnetic pulse on buried pipeline[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 55(4): 507-522. [11] 刘青, 谢彦召. 高空电磁脉冲作用下埋地电缆的瞬态响应规律[J]. 高电压技术, 2017, 43(9): 3014-3020. Liu Qing, Xie Yanzhao.Transient response law of buried cable to high altitude electromagnetic pulse[J]. High Voltage Engineering, 2017, 43(9): 3014-3020. [12] 周星, 王川川, 朱长青, 等. 外场辐照下埋地电缆瞬态响应规律研究[J]. 高压电器, 2013, 49(12): 7-12. Zhou Xing, Wang Chuanchuan, Zhu Changqing, et al.Transient induction response law of buried cable excited by external electromagnetic field[J]. High Voltage Apparatus, 2013, 49(12): 7-12. [13] 文刚, 姜勤波, 齐世举, 等. 非均匀土壤中埋地电缆HEMP响应研究[J]. 核电子学与探测技术, 2015, 35(7): 716-720. Wen Gang, Jiang Qinbo, Qi Shiju, et al.Response analysis of buried cable excited by HEMP in non-homogeneous earth[J]. Nuclear Electronics & Detection Technology, 2015, 35(7): 716-720. [14] 王川川, 朱长青, 周星, 等. 有限长度埋地多导体电缆对外界电磁场响应特性分析[J]. 高电压技术, 2012, 38(11): 2836-2842. Wang Chuanchuan, Zhu Changqing, Zhou Xing, et al.Response analysis on buried multiconductor cable with finite length to external electromagnetic field[J]. High Voltage Engineering, 2012, 38(11): 2836-2842. [15] 文刚, 齐世举, 姜勤波, 等. 大地水平分层电导率对架空线缆HEMP响应的影响[J]. 电工技术学报, 2016, 31(1): 91-95. Wen Gang, Qi Shiju, Jiang Qinbo, et al.Impact of horizontal stratified earth conductivity on overhead cable HEMP responses[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 91-95. [16] 刘连光, 张鹏飞, 王开让, 等. 地磁暴侵害油气管道的管地电位效应[J]. 电工技术学报, 2016, 31(9): 68-74. Liu Lianguang, Zhang Pengfei, Wang Kairang, et al.PSP interference effect of geomagnetic storm on buried pipelines[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 68-74. [17] 刘青, 徐婷, 韩康康, 等. 电磁脉冲在地上及地下的传播规律[J]. 高压电器, 2017, 53(1): 51-56. Liu Qing, Xu Ting, Han Kangkang, et al.Propagation law of electromagnetic pulse on the ground and underground[J]. High Voltage Apparatus, 2017, 53(1): 51-56. [18] Tesche F M, Ianoz M V, Karlsson T.EMC analysis methods and computational models[M]. New York: John Wiley & Sons, 1996. [19] 王庆国, 周星, 李许东. 基于BLT方程的传输线网络时域响应仿真方法[J]. 高电压技术, 2012, 38(9): 2205-2212. Wang Qingguo, Zhou Xing, Li Xudong.BLT equation based time-domain simulation method of transmission line networks responses to electromagnetic pulse[J]. High Voltage Engineering, 2012, 38(9): 2205-2212. [20] 孙蓓云, 崔志同, 周辉, 等. 埋地电缆高空电磁脉冲耦合响应[J].现代应用物理, 2014, 5(4): 269-274. Sun Beiyun, Cui Zhitong, Zhou Hui, et al.Coupling effects of HEMP on buried cables[J]. Modern Applied Physics, 2014, 5(4): 269-274. [21] 齐磊, 原辉, 崔翔. 埋地金属管与架空电力线路并行时管道饱和平行长度及最大金属电位计算[J]. 高电压技术, 2011, 37(10): 2601-2606. Qi Lei, Yuan Hui, Cui Xiang.Calculation of critical length and maximum metal voltage for underground metal pipeline in parallel with the overhead power transmission line[J]. High Voltage Engineering, 2011, 37(10): 2601-2606. [22] Ianoz M, Nicoara I C, Radasky W A.Modeling of an EMP conducted environment[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(3): 400-413. [23] Yun Wanying, Lu Zhenzhou, Zhang Kaichao, et al.An efficient sampling method for variance-based sensitivity analysis[J]. Structural Safety, 2017, 65: 74-83.