Research of Unified Power Quality Conditioner Engineering Experiment Device based on Modular Multilevel Converter
Yang Yongchun1,2, Xiao Xiangning2, Guo Shixiao1,2, Gao Yajing1,2, Zhang Bo1,2
1. Hebei Key Laboratory of Distributed Energy Storage and Micro-grid North China Electric Power University Baoding 071003 China; 2. State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China
Abstract:The combination of modular multilevel converter (MMC) technology and unified power quality conditioner (UPQC) provides the possibility for UPQC to be used in high-voltage and large capacity applications, and also provides an intelligent idea for the centralized solution of power quality problems. The study on MMC-type UPQC has tremendous technical significance and market value. Firstly, the working principle of UPQC based on MMC is analyzed, and the key parameters are then studied and designed. In addition, corresponding control strategies are proposed for power quality compensation functions of UPQC parallel side and series side MMC converters. The simulation results under PSCAD/EMTDC verify the correctness of the parameter design and the effectiveness of the control strategy. Furthermore, a set of UPQC engineering experimental device based on MMC with the scale of 4MV·A/10kV is developed, the field experiment is carried out correspondingly. The experimental results show that MMC-type UPQC can achieve multiple power quality compensation.
[1] 王成山, 王守相. 分布式发电供能系统若干问题研究[J]. 电力系统自动化, 2008, 32(20): 1-4. Wang Chengshan, Wang Shouxiang.Study on some key problems related to distributed generation systems[J]. Automation of Electric Power Systems, 2008, 32(20): 1-4. [2] 杨刚, 杨奇逊, 张涛, 等. 微网中双向DC-AC变流器的性能优化控制[J]. 电工技术学报, 2016, 31(7): 81-91. Yang Gang, Yang Qixun, Zhang Tao, et al.Improvement control of dual-direction DC-AC converters for microgrids[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 81-91. [3] 中共中央, 国务院. 关于进一步深化电力体制改革的若干意见: 中发[2015]9号[Z]. 北京, 2015. [4] 孔祥瑞, 李鹏, 严正, 等. 售电侧放开环境下的电力市场压力测试分析[J]. 电网技术, 2016, 40(11): 3279-3286. Kong Xiangrui, Li Peng, Yan Zheng, et al.Stress testing on electricity market with retail transactions opened[J]. Power System Technology, 2016, 40(11): 3279-3286. [5] 陈鹏伟, 肖湘宁, 陶顺. 直流微网电能质量问题探讨[J]. 电力系统自动化, 2016, 40(10): 148-158. Chen Pengwei, Xiao Xiangyning, Tao Shun.Discussion on power quality problems for DC microgrid[J]. Automation of Electric Power Systems, 2016, 40(10): 148-158. [6] 肖湘宁, 廖坤玉, 唐松浩, 等. 配电网电力电子化的发展和超高次谐波新问题[J]. 电工技术学报, 2018, 33(4): 707-720. Xiao Xiangning, Liao Kunyu, Tang Songhao, et al.Development of power-electronized distribution grids and the new supraharmonics issues[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 707-720. [7] 肖湘宁. 电能质量分析与控制[M]. 北京: 中国电力出版社, 2004. [8] 吴亚盆, 刘颖英, 徐永海. 可编程序控制器对电压暂降敏感度的试验研究[J]. 电工技术学报, 2018, 33(6): 1422-143. Wu Yapen, Liu Yingying, Xu Yonghai.Experimental research on PLCs sensitivity during voltage sags[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1422-143. [9] Akagi H, Kanazawa Y, Nabae A.Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Trans industry Applications, 1984, 20(3): 625-630. [10] Wang Z, Wang Q, Yao W, et al.A series active power filter adopting hybrid control approach[J]. Advanced Technology of Electrical Engineering & Energy, 1999, 16(3): 301-310 [11] Srianthumrong S, Akagi H.A DC module for transient analysis of a series active filter integrated with a double-series diode rectifier[J]. IEEE Transa- ctions on Industry Applications, 2003, 39(3): 864-873. [12] Fujita H, Akagi H.The unified power quality conditioner: the integration of series-active and shunt-active filters[J]. IEEE Transactions on Power Electronics, 2002, 13(2): 315-322. [13] 赵国亮, 陈维江, 龙云波, 等. 北京优质电力园区优质供电方案[J]. 中国电力, 2016, 49(7): 60-64. Zhao Guoliang, Chen Weijiang, Long Yunbo, et al.Research on optimum power supply scheme for Beijing premium power park project[J]. Electric Power, 2016, 49(7): 60-64. [14] 段耀强. 统一电能质量调节器控制策略及工业装置研究[D]. 北京: 中国电力科学研究院, 2015. [15] 陈继开, 孙川, 李国庆, 等. 双极MMC-HVDC系统直流故障特性研究[J]. 电工技术学报, 2017, 32(10): 53-60. Chen Jikai, Sun Chuan, Li Guoqing, et al.Study on characteristics of DC fault in bipolar MMC-HVDC system[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 53-60. [16] 王珊珊, 周孝信, 汤广福, 等. 模块化多电平电压源换流器的数学模型[J]. 中国电机工程学报, 2011, 31(24): 1-8. Wang Shanshan, Zhou Xiaoxin, Tang Guangfu, et al.Modeling of modular multi-level voltage source converter[J]. Proceedings of the CSEE, 2011, 31(24): 1-8. [17] 陆晶晶, 肖湘宁, 张剑, 等. 基于定有功电流限值控制的MMC型UPQC协调控制方法[J]. 电工技术学报, 2015, 30(3): 196-204. Lu Jingjing, Xiao Xiangning, Zhang Jian, et al.MMC-UPQC coordinated control method based on fixed active current limit value control[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 196-204. [18] 赵成勇, 胡静, 翟晓萌, 等. 模块化多电平换流器桥臂电抗器参数设计方法[J]. 电力系统自动化, 2013, 37(15): 89-94. Zhao Chengyong, Hu Jing, Zhai Xiaomeng, et al.A parameter design method of bridge arm reactor in modular multilevel converter[J]. Automation of Electric Power Systems, 2013, 37(15): 89-94. [19] 徐政, 肖晃庆, 张哲任. 模块化多电平换流器主回路参数设计[J]. 高电压技术, 2015, 41(8): 2514-2527. Xu Zheng, Xiao Huangqing, Zhang Zheren.Design of main circuit parameters of modular multilevel converters[J]. High Voltage Technology, 2015, 41(8): 2514-2527. [20] Hagiwara M, Akagi H.Control and experiment of pulsewidth-modulated modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2009, 18(24): 1737-1746.